

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
dockerlabs

Collection of Docker Training Materials





          

      

      

    

  

    
      
          
            
  
Docker Networking Basics




Lab Meta


Difficulty: Beginner





Time: Approximately 10 minutes




In this lab you’ll look at the most basic networking components that come with a fresh installation of Docker.

You will complete the following steps as part of this lab.


	Step 1 - The docker network command


	Step 2 - List networks


	Step 3 - Inspect a network


	Step 4 - List network driver plugins







Prerequisites

You will need all of the following to complete this lab:


	A Linux-based Docker Host running Docker 1.12 or higher







[bookmark: docker_network]Step 1: The docker network command

The docker network command is the main command for configuring and managing container networks.

Run a simple docker network command from any of your lab machines.

$ docker network

Usage:  docker network COMMAND

Manage Docker networks

Options:
      --help   Print usage

Commands:
  connect     Connect a container to a network
  create      Create a network
  disconnect  Disconnect a container from a network
  inspect     Display detailed information on one or more networks
  ls          List networks
  rm          Remove one or more networks

Run 'docker network COMMAND --help' for more information on a command.





The command output shows how to use the command as well as all of the docker network sub-commands. As you can see from the output, the docker network command allows you to create new networks, list existing networks, inspect networks, and remove networks. It also allows you to connect and disconnect containers from networks.




[bookmark: list_networks]Step 2: List networks

Run a docker network ls command to view existing container networks on the current Docker host.

$ docker network ls
NETWORK ID          NAME                DRIVER              SCOPE
1befe23acd58        bridge              bridge              local
726ead8f4e6b        host                host                local
ef4896538cc7        none                null                local





The output above shows the container networks that are created as part of a standard installation of Docker.

New networks that you create will also show up in the output of the docker network ls command.

You can see that each network gets a unique ID and NAME. Each network is also associated with a single driver. Notice that the “bridge” network and the “host” network have the same name as their respective drivers.




[bookmark: inspect]Step 3: Inspect a network

The docker network inspect command is used to view network configuration details. These details include; name, ID, driver, IPAM driver, subnet info, connected containers, and more.

Use docker network inspect to view configuration details of the container networks on your Docker host. The command below shows the details of the network called bridge.

$ docker network inspect bridge
[
    {
        "Name": "bridge",
        "Id": "1befe23acd58cbda7290c45f6d1f5c37a3b43de645d48de6c1ffebd985c8af4b",
        "Scope": "local",
        "Driver": "bridge",
        "EnableIPv6": false,
        "IPAM": {
            "Driver": "default",
            "Options": null,
            "Config": [
                {
                    "Subnet": "172.17.0.0/16",
                    "Gateway": "172.17.0.1"
                }
            ]
        },
        "Internal": false,
        "Containers": {},
        "Options": {
            "com.docker.network.bridge.default_bridge": "true",
            "com.docker.network.bridge.enable_icc": "true",
            "com.docker.network.bridge.enable_ip_masquerade": "true",
            "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
            "com.docker.network.bridge.name": "docker0",
            "com.docker.network.driver.mtu": "1500"
        },
        "Labels": {}
    }
]






NOTE: The syntax of the docker network inspect command is docker network inspect <network>, where <network> can be either network name or network ID. In the example above we are showing the configuration details for the network called “bridge”. Do not confuse this with the “bridge” driver.







[bookmark: list_drivers]Step 4: List network driver plugins

The docker info command shows a lot of interesting information about a Docker installation.

Run a docker info command on any of your Docker hosts and locate the list of network plugins.

$ docker info
Containers: 0
 Running: 0
 Paused: 0
 Stopped: 0
Images: 0
Server Version: 1.12.3
Storage Driver: aufs
<Snip>
Plugins:
 Volume: local
 Network: bridge host null overlay    <<<<<<<<
Swarm: inactive
Runtimes: runc
<Snip>





The output above shows the bridge, host, null, and overlay drivers.





          

      

      

    

  

    
      
          
            
  
Bridge networking




Lab Meta


Difficulty: Intermediate





Time: Approximately 15 minutes




In this lab you’ll learn how to build, manage, and use bridge networks.

You will complete the following steps as part of this lab.


	Step 1 - The default bridge network


	Step 2 - Connect a container to the default bridge network


	Step 3 - Test the network connectivity


	Step 4 - Configure NAT for external access







Prerequisites

You will need all of the following to complete this lab:


	A Linux-based Docker host running Docker 1.12 or higher


	The lab was built and tested using Ubuntu 16.04







[bookmark: default_bridge]Step 1: The default bridge network

Every clean installation of Docker comes with a pre-built network called bridge. Verify this with the docker network ls command.

$ docker network ls
NETWORK ID          NAME                DRIVER              SCOPE
1befe23acd58        bridge              bridge              local
726ead8f4e6b        host                host                local
ef4896538cc7        none                null                local





The output above shows that the bridge network is associated with the bridge driver. It’s important to note that the network and the driver are connected, but they are not the same. In this example the network and the driver have the same name - but they are not the same thing!

The output above also shows that the bridge network is scoped locally. This means that the network only exists on this Docker host. This is true of all networks using the bridge driver - the bridge driver provides single-host networking.

All networks created with the bridge driver are based on a Linux bridge (a.k.a. a virtual switch).

Install the brctl command and use it to list the Linux bridges on your Docker host.

# Install the brctl tools

$ apt-get install bridge-utils
<Snip>

# List the bridges on your Docker host

$ brctl show
bridge name     bridge id               STP enabled     interfaces
docker0         8000.0242f17f89a6       no





The output above shows a single Linux bridge called docker0. This is the bridge that was automatically created for the bridge network. You can see that it has no interfaces currently connected to it.

You can also use the ip command to view details of the docker0 bridge.

$ ip a
<Snip>
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
    link/ether 02:42:f1:7f:89:a6 brd ff:ff:ff:ff:ff:ff
    inet 172.17.0.1/16 scope global docker0
       valid_lft forever preferred_lft forever
    inet6 fe80::42:f1ff:fe7f:89a6/64 scope link
       valid_lft forever preferred_lft forever








[bookmark: connect-container]Step 2: Connect a container

The bridge network is the default network for new containers. This means that unless you specify a different network, all new containers will be connected to the bridge network.

Create a new container.

$ docker run -dt ubuntu sleep infinity
6dd93d6cdc806df6c7812b6202f6096e43d9a013e56e5e638ee4bfb4ae8779ce





This command will create a new container based on the ubuntu:latest image and will run the sleep command to keep the container running in the background. As no network was specified on the docker run command, the container will be added to the bridge network.

Run the brctl show command again.

$ brctl show
bridge name     bridge id               STP enabled     interfaces
docker0         8000.0242f17f89a6       no              veth3a080f





Notice how the docker0 bridge now has an interface connected. This interface connects the docker0 bridge to the new container just created.

Inspect the bridge network again to see the new container attached to it.

$ docker network inspect bridge
<Snip>
        "Containers": {
            "6dd93d6cdc806df6c7812b6202f6096e43d9a013e56e5e638ee4bfb4ae8779ce": {
                "Name": "reverent_dubinsky",
                "EndpointID": "dda76da5577960b30492fdf1526c7dd7924725e5d654bed57b44e1a6e85e956c",
                "MacAddress": "02:42:ac:11:00:02",
                "IPv4Address": "172.17.0.2/16",
                "IPv6Address": ""
            }
        },
<Snip>








[bookmark: ping_local]Step 3: Test network connectivity

The output to the previous docker network inspect command shows the IP address of the new container. In the previous example it is “172.17.0.2” but yours might be different.

Ping the IP address of the container from the shell prompt of your Docker host. Remember to use the IP of the container in your environment.

$ ping 172.17.0.2
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.069 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.052 ms
64 bytes from 172.17.0.2: icmp_seq=3 ttl=64 time=0.050 ms
64 bytes from 172.17.0.2: icmp_seq=4 ttl=64 time=0.049 ms
64 bytes from 172.17.0.2: icmp_seq=5 ttl=64 time=0.049 ms
^C
--- 172.17.0.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3999ms
rtt min/avg/max/mdev = 0.049/0.053/0.069/0.012 ms





Press Ctrl-C to stop the ping. The replies above show that the Docker host can ping the container over the bridge network.

Log in to the container, install the ping
program and ping www.dockercon.com.

# Get the ID of the container started in the previous step.
$ docker ps
CONTAINER ID    IMAGE    COMMAND             CREATED  STATUS  NAMES
6dd93d6cdc80    ubuntu   "sleep infinity"    5 mins   Up      reverent_dubinsky

# Exec into the container
$ docker exec -it 6dd93d6cdc80 /bin/bash

# Update APT package lists and install the iputils-ping package
root@6dd93d6cdc80:/# apt-get update
<Snip>

apt-get install iputils-ping
Reading package lists... Done
<Snip>

# Ping www.dockercon.com from within the container
root@6dd93d6cdc80:/# ping www.dockercon.com
PING www.dockercon.com (104.239.220.248) 56(84) bytes of data.
64 bytes from 104.239.220.248: icmp_seq=1 ttl=39 time=93.9 ms
64 bytes from 104.239.220.248: icmp_seq=2 ttl=39 time=93.8 ms
64 bytes from 104.239.220.248: icmp_seq=3 ttl=39 time=93.8 ms
^C
--- www.dockercon.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 93.878/93.895/93.928/0.251 ms





This shows that the new container can ping the internet and therefore has a valid and working network configuration.




[bookmark: nat]Step 4: Configure NAT for external connectivity

In this step we’ll start a new NGINX container and map port 8080 on the Docker host to port 80 inside of the container. This means that traffic that hits the Docker host on port 8080 will be passed on to port 80 inside the container.


NOTE: If you start a new container from the official NGINX image without specifying a command to run, the container will run a basic web server on port 80.




Start a new container based off the official NGINX image.

$ docker run --name web1 -d -p 8080:80 nginx
Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx
386a066cd84a: Pull complete
7bdb4b002d7f: Pull complete
49b006ddea70: Pull complete
Digest: sha256:9038d5645fa5fcca445d12e1b8979c87f46ca42cfb17beb1e5e093785991a639
Status: Downloaded newer image for nginx:latest
b747d43fa277ec5da4e904b932db2a3fe4047991007c2d3649e3f0c615961038





Check that the container is running and view the port mapping.

$ docker ps
CONTAINER ID    IMAGE               COMMAND                  CREATED             STATUS              PORTS                           NAMES
b747d43fa277   nginx               "nginx -g 'daemon off"   3 seconds ago       Up 2 seconds        443/tcp, 0.0.0.0:8080->80/tcp   web1
6dd93d6cdc80        ubuntu              "sleep infinity"         About an hour ago   Up About an hour                                    reverent_dubinsky





There are two containers listed in the output above. The top line shows the new web1 container running NGINX. Take note of the command the container is running as well as the port mapping - 0.0.0.0:8080->80/tcp maps port 8080 on all host interfaces to port 80 inside the web1 container. This port mapping is what effectively makes the containers web service accessible from external sources (via the Docker hosts IP address on port 8080).

Now that the container is running and mapped to a port on a host interface you can test connectivity to the NGINX web server.

To complete the following task you will need the IP address of your Docker host. This will need to be an IP address that you can reach (e.g. if your lab is in AWS this will need to be the instance’s Public IP).

Point your web browser to the IP and port 8080 of your Docker host. The following example shows a web browser pointed to 52.213.169.69:8080

[image: ]

If you try connecting to the same IP address on a different port number it will fail.

If for some reason you cannot open a session from a web broswer, you can connect from your Docker host using the curl command.

$ curl 127.0.0.1:8080
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
    <Snip>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>





If you try and curl the IP address on a different port number it will fail.


NOTE: The port mapping is actually port address translation (PAT).








          

      

      

    

  

    
      
          
            
  
Overlay networking and service discovery




Lab Meta


Difficulty: Intermediate





Time: Approximately 20 minutes




In this lab you’ll learn how to build, manage, and use an overlay network with a service in Swarm mode.

You will complete the following steps as part of this lab.


	Step 1 - Create a new Swarm


	Step 2 - Create an overlay network


	Step 3 - Create a service


	Step 4 - Test the network


	Step 5 - Test service discovery







Prerequisites

You will need all of the following to complete this lab:


	Two Linux-based Docker hosts running Docker 1.12 or higher in Engine mode (i.e. not yet configured for Swarm mode). You should use node1 and node2 from your lab.







[bookmark: swarm_init]Step 1: Create a new Swarm

In this step you’ll initialize a new Swarm, join a single worker node, and verify the operations worked.


	Execute the following command on node1.

node1$ docker swarm init
Swarm initialized: current node (cw6jpk7pqfg0jkilff5hr8z42) is now a manager.
To add a worker to this swarm, run the following command:

docker swarm join \
--token SWMTKN-1-3n2iuzpj8jynx0zd8axr0ouoagvy0o75uk5aqjrn0297j4uaz7-63eslya31oza2ob78b88zg5xe \
172.31.34.123:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.







	Copy the entire docker swarm join command that is displayed as part of the output from the command.


	Paste the copied command into the terminal of node2.

node2$ docker swarm join \
>     --token SWMTKN-1-3n2iuzpj8jynx0zd8axr0ouoagvy0o75uk5aqjrn0297j4uaz7-63eslya31oza2ob78b88zg5xe \
>     172.31.34.123:2377

This node joined a swarm as a worker.







	Run a docker node ls on node1 to verify that both nodes are part of the Swarm.

node1$ docker node ls
ID                           HOSTNAME          STATUS  AVAILABILITY  MANAGER STATUS
4nb02fhvhy8sb0ygcvwya9skr    ip-172-31-43-74   Ready   Active
cw6jpk7pqfg0jkilff5hr8z42 *  ip-172-31-34-123  Ready   Active        Leader





The ID and HOSTNAME values may be different in your lab. The important thing to check is that both nodes have joined the Swarm and are ready and active.








[bookmark: create_network]Step 2: Create an overlay network

Now that you have a Swarm initialized it’s time to create an overlay network.


	Create a new overlay network called “overnet” by executing the following command on node1.

node1$ docker network create -d overlay overnet
0cihm9yiolp0s9kcczchqorhb







	Use the docker network ls command to verify the network was created successfully.

node1$ docker network ls
NETWORK ID          NAME                DRIVER      SCOPE
1befe23acd58        bridge              bridge      local
0ea6066635df        docker_gwbridge     bridge      local
726ead8f4e6b        host                host        local
8eqnahrmp9lv        ingress             overlay     swarm
ef4896538cc7        none                null        local
0cihm9yiolp0        overnet             overlay     swarm





The new “overnet” network is shown on the last line of the output above. Notice how it is associated with the overlay driver and is scoped to the entire Swarm.


NOTE: The other new networks (ingress and docker_gwbridge) were created automatically when the Swarm cluster was created.






	Run the same docker network ls command from node2

node2$ docker network ls
NETWORK ID          NAME                DRIVER      SCOPE
b76635120433        bridge              bridge      local
ea13f975a254        docker_gwbridge     bridge      local
73edc8c0cc70        host                host        local
8eqnahrmp9lv        ingress             overlay     swarm
c4fb141606ca        none                null        local





Notice that the “overnet” network does not appear in the list. This is because Docker only extends overlay networks to hosts when they are needed. This is usually when a host runs a task from a service that is created on the network. We will see this shortly.



	Use the docker network inspect command to view more detailed information about the “overnet” network. You will need to run this command from node1.

node1$ docker network inspect overnet
[
    {
        "Name": "overnet",
        "Id": "0cihm9yiolp0s9kcczchqorhb",
        "Scope": "swarm",
        "Driver": "overlay",
        "EnableIPv6": false,
        "IPAM": {
            "Driver": "default",
            "Options": null,
            "Config": []
        },
        "Internal": false,
        "Containers": null,
        "Options": {
            "com.docker.network.driver.overlay.vxlanid_list": "257"
        },
        "Labels": null
    }
]












[bookmark: create_service]Step 3: Create a service

Now that you have a Swarm initialized and an overlay network, it’s time to create a service that uses the network.


	Execute the following command from node1 to create a new service called myservice on the overnet network with two tasks/replicas.

node1$ docker service create --name myservice \
--network overnet \
--replicas 2 \
ubuntu sleep infinity

e9xu03wsxhub3bij2tqyjey5t







	Verify that the service is created and both replicas are up.

node1$ docker service ls
ID            NAME       REPLICAS  IMAGE   COMMAND
e9xu03wsxhub  myservice  2/2       ubuntu  sleep infinity





The 2/2 in the REPLICAS column shows that both tasks in the service are up and running.



	Verify that a single task (replica) is running on each of the two nodes in the Swarm.

node1$ docker service ps myservice
ID            NAME         IMAGE   NODE   DESIRED STATE  CURRENT STATE  ERROR
5t4wh...fsvz  myservice.1  ubuntu  node1  Running        Running 2 mins
8d9b4...te27  myservice.2  ubuntu  node2  Running        Running 2 mins





The ID and NODE values might be different in your output. The important thing to note is that each task/replica is running on a different node.



	Now that node2 is running a task on the “overnet” network it will be able to see the “overnet” network. Run the following command from node2 to verify this.

node2$ docker network ls
NETWORK ID          NAME                DRIVER      SCOPE
b76635120433        bridge              bridge      local
ea13f975a254        docker_gwbridge     bridge      local
73edc8c0cc70        host                host        local
8eqnahrmp9lv        ingress             overlay     swarm
c4fb141606ca        none                null        local
0cihm9yiolp0        overnet             overlay     swarm







	Run the following command on node2 to get more detailed information about the “overnet” network and obtain the IP address of the task running on node2.

node2$ docker network inspect overnet
[
    {
        "Name": "overnet",
        "Id": "0cihm9yiolp0s9kcczchqorhb",
        "Scope": "swarm",
        "Driver": "overlay",
        "EnableIPv6": false,
        "IPAM": {
            "Driver": "default",
            "Options": null,
            "Config": [
                {
                    "Subnet": "10.0.0.0/24",
                    "Gateway": "10.0.0.1"
                }
                ]
        },
        "Internal": false,
        "Containers": {
            "286d2e98c764...37f5870c868": {
                "Name": "myservice.1.5t4wh7ngrzt9va3zlqxbmfsvz",
                "EndpointID": "43590b5453a...4d641c0c913841d657",
                "MacAddress": "02:42:0a:00:00:04",
                "IPv4Address": "10.0.0.4/24",
                "IPv6Address": ""
            }
        },      
        "Options": {
            "com.docker.network.driver.overlay.vxlanid_list": "257"
            },
            "Labels": {}
            }
        ]









You should note that as of Docker 1.12, docker network inspect only shows containers/tasks running on the local node. This means that 10.0.0.4 is the IPv4 address of the container running on node2. Make a note of this IP address for the next step (the IP address in your lab might be different than the one shown here in the lab guide).




[bookmark: test]Step 4: Test the network

To complete this step you will need the IP address of the service task running on node2 that you saw in the previous step.


	Execute the following commands from node1.

node1$ docker network inspect overnet
[
    {
        "Name": "overnet",
        "Id": "0cihm9yiolp0s9kcczchqorhb",
        "Scope": "swarm",
        "Driver": "overlay",
        "Containers": {
            "053abaa...e874f82d346c23a7a": {
                "Name": "myservice.2.8d9b4i6vnm4hf6gdhxt40te27",
                "EndpointID": "25d4d5...faf6abd60dba7ff9b5fff6",
                "MacAddress": "02:42:0a:00:00:03",
                "IPv4Address": "10.0.0.3/24",
                "IPv6Address": ""
            }
        },      
        "Options": {
            "com.docker.network.driver.overlay.vxlanid_list": "257"
        },
        "Labels": {}
    }
]





Notice that the IP address listed for the service task (container) running on node1 is different to the IP address for the service task running on node2. Note also that they are one the sane “overnet” network.



	Run a docker ps command to get the ID of the service task on node1 so that you can log in to it in the next step.

node1$ docker ps
CONTAINER ID   IMAGE           COMMAND            CREATED      STATUS         NAMES
053abaac4f93   ubuntu:latest   "sleep infinity"   19 mins ago  Up 19 mins     myservice.2.8d9b4i6vnm4hf6gdhxt40te27
<Snip>







	Log on to the service task. Be sure to use the container ID from your environment as it will be different from the example shown below.

node1$ docker exec -it 053abaac4f93 /bin/bash
root@053abaac4f93:/#







	Install the ping command and ping the service task running on node2.

root@053abaac4f93:/# apt-get update && apt-get install iputils-ping
<Snip>
root@053abaac4f93:/#
root@053abaac4f93:/#
root@053abaac4f93:/# ping 10.0.0.4
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.726 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=0.647 ms
^C
--- 10.0.0.4 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.647/0.686/0.726/0.047 ms





The output above shows that both tasks from the myservice service are on the same overlay network spanning both nodes and that they can use this network to communicate.








[bookmark: discover]Step 5: Test service discovery

Now that you have a working service using an overlay network, let’s test service discovery.

If you are not still inside of the container on node1, log back into it with the docker exec command.


	Run the following command form inside of the container on node1.

root@053abaac4f93:/# cat /etc/resolv.conf
search eu-west-1.compute.internal
nameserver 127.0.0.11
options ndots:0





The value that we are interested in is the nameserver 127.0.0.11. This value sends all DNS queries from the container to an embedded DNS resolver running inside the container listening on 127.0.0.11:53. All Docker container run an embedded DNS server at this address.


NOTE: Some of the other values in your file may be different to those shown in this guide.






	Try and ping the myservice name from within the container.

root@053abaac4f93:/# ping myservice
PING myservice (10.0.0.2) 56(84) bytes of data.
64 bytes from ip-10-0-0-2.eu-west-1.compute.internal (10.0.0.2): icmp_seq=1 ttl=64 time=0.020 ms
64 bytes from ip-10-0-0-2.eu-west-1.compute.internal (10.0.0.2): icmp_seq=2 ttl=64 time=0.041 ms
64 bytes from ip-10-0-0-2.eu-west-1.compute.internal (10.0.0.2): icmp_seq=3 ttl=64 time=0.039 ms
^C
--- myservice ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 0.020/0.033/0.041/0.010 ms





The output clearly shows that the container can ping the myservice service by name. Notice that the IP address returned is 10.0.0.2. In the next few steps we’ll verify that this address is the virtual IP (VIP) assigned to the myservice service.



	Type the exit command to leave the exec container session and return to the shell prompt of your node1 Docker host.


	Inspect the configuration of the myservice service and verify that the VIP value matches the value returned by the previous ping myservice command.

node1$ docker service inspect myservice
[
    {
        "ID": "e9xu03wsxhub3bij2tqyjey5t",
        "Version": {
            "Index": 20
        },
        "CreatedAt": "2016-11-23T09:28:57.888561605Z",
        "UpdatedAt": "2016-11-23T09:28:57.890326642Z",
        "Spec": {
            "Name": "myservice",
            "TaskTemplate": {
                "ContainerSpec": {
                    "Image": "ubuntu",
                    "Args": [
                        "sleep",
                        "infinity"
                    ]
                },
<Snip>
        "Endpoint": {
            "Spec": {
                "Mode": "vip"
            },
            "VirtualIPs": [
                {
                    "NetworkID": "0cihm9yiolp0s9kcczchqorhb",
                    "Addr": "10.0.0.2/24"
                }
<Snip>





Towards the bottom of the output you will see the VIP of the service listed. The VIP in the output above is 10.0.0.2 but the value may be different in your setup. The important point to note is that the VIP listed here matches the value returned by the ping myservice command.





Feel free to create a new docker exec session to the service task (container) running on node2 and perform the same ping service command. You will get a response form the same VIP.





          

      

      

    

  

    
      
          
            
  
HTTP Routing Mesh (HRM)


NOTE: This lab assumes two things.
>1. You have configured DNS name resolution for red.example.com and white.example.com to point to a load balancer. This name resolution is required for your laptop/desktop and not the Docker nodes that will make up your UCP cluster. Therefore, it can be as simple as a couple of entries in the local hosts file of your laptop or desktop. As long as your web browser can resolve red.example.com and white.example.com to a load balancer in front of your Swarm this lab will work.
>2. You have configured an external load balancer to accept connections for the two DNS names above and to load balance across all nodes in a UCP cluster.







Lab Meta


Difficulty: Intermediate





Time: Approximately 15 minutes




In this lab you’ll learn how to configure and use the HTTP Routing Mesh with Docker Datacenter.

You will complete the following steps as part of this lab.


	Step 1 - Enable the HTTP Routing Mesh (HRM)


	Step 2 - Verify the HRM


	Step 3 - Create the RED service


	Step 4 - Create the WHITE service


	Step 5 - Test the configuration







Prerequisites

You will need all of the following to complete this lab:


	A UCP Cluster running Docker 1.12 or higher


	Credentials to log in to UCP, create services, and enable the HRM


	Name resolution configured for two DNS names (your lab instructor will give you these)




Your instructor will provide you with the details you require.


NOTE: Throughout this guide we will use red.example.com and white.example.com. As per the note above, you will need to configure this yourself. You can also substitute other names if you like.That would mean that any time you see red.example.com and white.example.com you will need to substitute these for red. and white.<your-domain-goes-here>.







[bookmark: enable_hrm]Step 1: Enable the HTTP Routing Mesh (HRM)


	Use a web browser to connect to the Login page of your UCP cluster


	Enter your credentials as supplied by your lab instructor


	Navigate to Admin Settings > Routing Mesh and enable the HTTP Routing Mesh (HRM) on port 80.

[image: ]





The HRM is now configured and ready to use.




[bookmark: verify_hrm]Step 2: Verify the HRM

Enabling the HRM creates a new service called ucp-hrm and a new network called ucp-hrm. In this step we’ll confirm that both of these constructs have been created correctly.

Execute the following steps in the UCP web UI.


	Navigate to Resources > Networks and check for the presence of the ucp-hrm network. You may have to search for it.

[image: ]

The network shows as an overlay network scoped to the entire Swarm cluster.



	Navigate to Resources > Services and click the checkbox to Show system services.

[image: ]





The image above shows the ucp-hrm service up and running.

You have now verified that the HRM was configured successfully.

In the next two steps you’ll create two services. Each service will based off the same ehazlett/docker-demo:latest image, and runs a web server that counts containers and requests. You will configure each service with a different number of tasks and each with a different value in the TITLE variable.




[bookmark: create_red]Step 3: Create the RED service

In this step you’ll create a new service called RED, and configure it to use the HRM.


	In DDC click Resources > Services and then +Create Service.


	Configure the service as follows (leave all other options as default and remember to substitute “red.example.com” with the DNS name from your environment):





	Name: RED


	Image: ehazlett/docker-demo:latest


	Scale: 10


	Arguments: -close-conn


	Published port: Port = 8080/tcp, Public Port = 5000


	Attached Networks: ucp-hrm


	Labels: com.docker.ucp.mesh.http = 8080=http://red.example.com


	Environment Variables: TITLE = RED




It will take a few minutes for this service to pull down the image and start.  Continue with the next step to create the WHITE service.




[bookmark: create_white]Step 4: Create the WHITE service

In this step you’ll create a new service called WHITE. The service will be very similar to the RED service created in the previous step.


	In DDC click Resources > Services and then +Create Service.


	Configure the service as follows (leave all other options as default and remember to substitute “red.example.com” with the DNS name from your environment):





	Name: RWHITE


	Image: ehazlett/docker-demo:latest


	Scale: 5


	Arguments: -close-conn


	Published port: Port = 8080/tcp, Public Port = 5001


	Attached Networks: ucp-hrm


	Labels: com.docker.ucp.mesh.http = 8080=http://white.example.com


	Environment Variables: TITLE = WHITE




This service will start instantaneously as the image is already pulled on every host in your UCP cluster.


	Verify that both services are up and running by clicking Resources > Services and checking that both services are running as shown below.




[image: ]

You now have two services running. Both are connected to the ucp-hrm network and both have the com.docker.ucp.mesh.http label. The RED service is associated with HTTP requests for red.example.com and the WHITE service is associated with HTTP requests for white.example.com. This mapping of labels to URLs is leveraged by the ucp-hrm service which is published on port 80.




[bookmark: test]Step 5: Test the configuration


NOTE: DNS name resolution is required for this step. This can obviously be via the local hosts file, but this step will not work unless the URLs specified in the com.docker.ucp.mesh.http labels resolve to the UCP cluster nodes (probably via a load balancer).




In this step you will use your web browser to issue HTTP requests to red.example.com and white.example.com. DNS name resolution is configured so that these URLs resolve to a load balancer which in turn balances requests across all nodes in the UCP cluster.


Remember to substitute example.com with the domain supplied by your lab instructor.





	Open a web browser tab and point it to red.example.com.




[image: ]

The text below the whale saying “RED” indicates that this request was answered by the RED service. This is because the TITLE environment variable for the RED service was configured to display “RED” here. You also know it is the RED service as this was the service configured with 10 replicas (containers).


	Open another tab to white.example.com.




[image: ]

The output above shows that this request was routed to the WHITE service as it displays “WHITE” below the whale and only has 5 replicas (containers).

Congratulations. You configured two services in the same Swarm (UCP cluster) to respond to requests on port 80. Traffic to each service is routed based on the URL included in the host field of the HTTP header.

Requests arrive to the Swarm on port 80 and are forwarded to the ucp-hrm system service. The ucp-hrm service inspects the HTTP headers of requests and routes them to the service with the matching com.docker.ucp.mesh.http label.





          

      

      

    

  

    
      
          
            
  
Designing Scalable, Portable Docker Container Networks


What You Will Learn

Docker containers wrap a piece of software in a complete filesystem that contains everything needed to run: code, runtime, system tools, system libraries – anything that can be installed on a server. This guarantees that the software will always run the same, regardless of its environment. By default, containers isolate applications from one another and the underlying infrastructure, while providing an added layer of protection for the application.

What if the applications need to communicate with each other, the host, or an external network? How do you design a network to allow for proper connectivity while maintaining application portability, service discovery, load balancing, security, performance, and scalability? This document addresses these network design challenges as well as the tools available and common deployment patterns. It does not specify or recommend physical network design but provides options for how to design Docker networks while considering the constraints of the application and the physical network.


Prerequisites

Before continuing, being familiar with Docker concepts and Docker Swarm is recommended:


	Docker concepts [https://docs.docker.com/engine/understanding-docker/]


	Docker Swarm [https://docs.docker.com/engine/swarm/] and the newly introduced Swarm mode concepts [https://docs.docker.com/engine/swarm/key-concepts/#/services-and-tasks]







Networking concepts

This tutorial allows you to dive right in and try code in the Quick Tutorials section, or deep dive into this series of tutorials:


	Networking Basics


	Bridge Networking


	Overlay Networking


	HTTP Routing Mesh




Or you can first dive deep into the Network Concepts before trying in out in code yourself.









          

      

      

    

  

    
      
          
            
  ##Service Discovery & Load Balancing
Service discovery is increasingly important in a containerized world. To scale apps developers have broken them in to smaller pieces that can be distributed across different machines to provide load balancing and fault tolerance. This presents challenges from a networking perspective. The challenge is mapping a container to its location (the container’s IP address). Containers may be created and destroyed frequently and scheduled across different hosts dynamically. Containers must be able to register themsevles with a mapping authority and other services must be able to query this authority to find the location of those services.

When a new service (container) is created it should be able register itself with a service discovery authority. The IP address:port of the container will then be registered to that service. The mapping of services to containers should dynamically be updated when containers are added or removed from a service. This diagram shows an example of the service discovery process. A container is created, it is registered to a specific service, and then a load balancer is updated with the containers location and service. Converseley when a container is stopped or becomes unhealthy then it should be removed from the service and load balancer.


  
    
    Tutorial Application: The Pets App
    

    
 
  

    
      
          
            
  
[bookmark: pets]Tutorial Application: The Pets App

In the following example, we will use a fictional app called Pets [https://github.com/mark-church/pets] to illustrate the Network Deployment Models.  It serves up images of pets on a web page while counting the number of hits to the page in a backend database. It is configurable via two environment variables, DB and ROLE.


	DB specifies the hostname:port or IP:port of the db container for the web front end to use.


	ROLE specifies the “tenant” of the application and whether it serves pictures of dogs or cat.




It consists of web, a Python flask container, and db, a  redis container. Its architecture and required network policy is described below.

[image: Pets App Architecture and Network]

We will run this application on different network deployment models to show how we can instantiate connectivity and network policy. Each deployment model exhibits different characteristics that may be advantageous to your application and environment.

We will explore the following network deployment models in this section:


	Bridge Driver


	Overlay Driver


	MACVLAN Bridge Mode Driver







[bookmark: bridgemodel]Tutorial App: Bridge Driver

This model is the default behavior of the built-in Docker bridge network driver. The bridge driver creates a private network internal to the host and provides an external port mapping on a host interface for external connectivity.

#Create a user-defined bridge network for our application
$ docker network create -d bridge catnet

#Instantiate the backend DB on the catnet network
$ docker run -d --net catnet --name cat-db redis

#Instantiate the web frontend on the catnet network and configure it to connect to a container named `cat-db`
$ docker run -d --net catnet -p 8000:5000 -e 'DB=cat-db' -e 'ROLE=cat' chrch/web 






When an IP address is not specified, port mapping will be exposed on all interfaces of a host. In this case the container’s application is exposed on 0.0.0.0:8000. We can specify a specific IP address to advertise on only a single IP interface with the flag -p IP:host_port:container_port. More options to expose ports can be found in the Docker docs [https://docs.docker.com/engine/reference/run/#/expose-incoming-ports].




[image: Pet App using Bridge Driver]

The web container takes some environment variables to determine which backend it needs to connect to. Above we supply it with cat-db which is the name of our redis service. The Docker Engine’s built-in DNS will resolve a container’s name to its location in any user-defined network. Thus, on a network, a container or service can always be referenced by its name.

With the above commands we have deployed our application on a single host. The Docker bridge network provides connectivity and name resolution amongst the containers on the same bridge while exposing our frontend container externally.

$ docker network inspect catnet
[
    {
        "Name": "catnet",
        "Id": "81e45d3e3bf4f989abe87c42c8db63273f9bf30c1f5a593bae4667d5f0e33145",
        "Scope": "local",
        "Driver": "bridge",
        "EnableIPv6": false,
        "IPAM": {
            "Driver": "default",
            "Options": {},
            "Config": [
                {
                    "Subnet": "172.19.0.0/16",
                    "Gateway": "172.19.0.1/16"
                }
            ]
        },
        "Internal": false,
        "Attachable": false,
        "Containers": {
            "2a23faa18fb33b5d07eb4e0affb5da36449a78eeb196c944a5af3aaffe1ada37": {
                "Name": "backstabbing_pike",
                "EndpointID": "9039dae3218c47739ae327a30c9d9b219159deb1c0a6274c6d994d37baf2f7e3",
                "MacAddress": "02:42:ac:13:00:03",
                "IPv4Address": "172.19.0.3/16",
                "IPv6Address": ""
            },
            "dbf7f59187801e1bcd2b0a7d4731ca5f0a95236dbc4b4157af01697f295d4528": {
                "Name": "cat-db",
                "EndpointID": "7f7c51a0468acd849fd575adeadbcb5310c5987195555620d60ee3ffad37c680",
                "MacAddress": "02:42:ac:13:00:02",
                "IPv4Address": "172.19.0.2/16",
                "IPv6Address": ""
            }
        },
        "Options": {},
        "Labels": {}
    }
]





In this output, we can see that our two containers have automatically been given ip addresses from the 172.19.0.0/16 subnet. This is the subnet of the local catnet bridge, and it will provide all connected containers a subnet from this range unless they are statically configured.




Tutorial App: Multi-Host Bridge Driver Deployment

Deploying a multi-host application requires some additional configuration so that distributed components can connect with each other. In the following example we explicitly tell the web container the location of redis with the environment variable DB=hostB:8001. Another change is that we are port mapping port 6379 inside theredis container to port 8001 on the hostB. Without the port mapping, redis would only be accessible on its connected networks (the default bridge in this case).

host-A $ docker run -d -p 8000:5000 -e 'DB=host-B:8001' -e 'ROLE=cat' --name cat-web chrch/web 
host-B $ docker run -d -p 8001:6379 redis





[image: Pet App with Multi-Host Bridge Driver]


In this example we don’t specify a network to use, so the default Docker bridge network will exist on every host.




When we configure the location of redis at host-B:8001, we are creating a form of service discovery. We are configuring one service to be able to discover another service. In the single host example, this was done automatically because Docker Engine provided built-in DNS resolution for the container names. In this multi-host example we are doing this manually.


	cat-web makes a request to the redis service at host-B:8001


	On host-A the host-B hostname is resolved to host-B’s IP address by the infrastructure’s DNS


	The request from cat-web is masqueraded to use the host-A IP address.


	Traffic is routed or bridged by the external network to host-B where port 8001 is exposed.


	Traffic to port 8001 is NATed and routed on host-B to port 6379 on the cat-db container.




The hardcoding of application location is not typically recommended. Service discovery tools exist that provide these mappings dynamically as containers are created and destroyed in a cluster. The overlay driver provides global service discovery across a cluster. External tools such as Consul [https://www.consul.io/] and etcd [https://coreos.com/etcd/] also provide service discovery as an external service.

In the overlay driver example we will see that multi-host service discovery is provided out of the box, which is a major advantage of the overlay deployment model.


Bridge Driver Benefits and Use-Cases


	Very simple architecture promotes easy understanding and troubleshooting


	Widely deployed in current production environments


	Simple to deploy in any environment from developer laptops to production data center









[bookmark: overlaymodel]Tutorial App: Overlay Driver

This model utilizes the built-in overlay driver to provide multi-host connectivity out of the box. The default settings of the overlay driver will provide external connectivity to the outside world as well as internal connectivity and service discovery within a container application. The Overlay Driver Architecture section reviews the internals of the Overlay driver which you should review before reading this section.

In this example we are re-using the previous Pets application. Prior to this example we already set up a Docker Swarm. For instructions on how to set up a Swarm read the Docker docs [https://docs.docker.com/engine/swarm/swarm-tutorial/create-swarm/]. When the Swarm is set up, we can use the docker service create command to create containers and networks that will be managed by the Swarm.

The following shows how to inspect your Swarm, create an overlay network, and then provision some services on that overlay network. All of these commands are run on a UCP/swarm controller node.

#Display the nodes participating in this swarm cluster
$ docker node ls
ID                           HOSTNAME          STATUS  AVAILABILITY  MANAGER STATUS
a8dwuh6gy5898z3yeuvxaetjo    host-B  Ready   Active
elgt0bfuikjrntv3c33hr0752 *  host-A  Ready   Active        Leader

#Create the dognet overlay network
$ docker network create -d overlay --subnet 10.1.0.0/24 --gateway 10.1.0.1 dognet

#Create the backend service and place it on the dognet network
$ docker service create --network dognet --name dog-db redis

#Create the frontend service and expose it on port 8000 externally
$ docker service create --network dognet -p 8000:5000 -e 'DB=dog-db' -e 'ROLE=dog' --name dog-web chrch/web





[image: Pets App with Overlay Network]

We pass in DB=dog-db as an environment variable to the web container. The overlay driver will resolve the service name dog-db and load balance it to containers in that service. It is not required to expose the redis container on an external port because the overlay network will resolve and provide connectivity within the network.


Inside overlay and bridge networks, all TCP and UDP ports to containers are open and accessible to all other containers attached to the overlay network.




The dog-web service is exposed on port 8000, but in this case the routing mesh will expose port 8000 on every host in the Swarm. We can test to see if the application is working by going to <host-A>:8000 or <host-B>:8000 in the browser.

Complex network policies can easily be achieved with overlay networks. In the following configuration, we add the cat tenant to our existing application. This will represent two applications using the same cluster but requirE network micro-segmentation. We add a second overlay network with a second pair of web and redis containers. We also add an admin container that needs to have access to both tenants.

To accomplish this policy we create a second overlay network, catnet, and attach the new containers to it. We also create the admin service and attach it to both networks.

$ docker network create -d overlay --subnet 10.2.0.0/24 --gateway 10.2.0.1 catnet
$ docker service create --network catnet --name cat-db redis
$ docker service create --network catnet -p 9000:5000 -e 'DB=cat-db' -e 'ROLE=cat' --name cat-web chrch/web
$ docker service create --network dognet --network catnet -p 7000:5000 -e 'DB1=dog-db' -e 'DB2=cat-db' --name admin chrch/admin 





This example uses the following logical topology:


	dog-web and dog-db can communicate with each other, but not with the cat service.


	cat-web and cat-db can communicate with each other, but not with the dog service.


	admin is connected to both networks and has reachability to all containers.




[image: Pets App with Multi-Tenant Network]


Overlay Benefits and Use Cases


	Very simple multi-host connectivity for small and large deployments


	Provides service discovery and load balancing with no extra configuration or components


	Useful for east-west micro-segmentation via encrypted overlays


	Routing mesh can be used to advertise a service across an entire cluster









[bookmark: macvlanmodel]Tutorial App: MACVLAN Bridge Mode

There may be cases where the application or network environment requires containers to have routable IP addresses that are a part of the underlay subnets. The MACVLAN driver provides an implementation that makes this possible. As described in the MACVLAN Architecture section, a MACVLAN network binds itself to a host interface. This can be a physical interface, a logical sub-interface, or a bonded logical interface. It acts as a virtual switch and provides communication between containers on the same MACVLAN network. Each container receives a unique MAC address and an IP address of the physical network that the node is attached to.

[image: Pets App on a MACVLAN Network]

In this example, the Pets application is deployed on to host-A and host-B.

#Creation of local macvlan network on both hosts
host-A $ docker network create -d macvlan --subnet 192.168.0.0/24 --gateway 192.168.0.1 -o parent=eth0 macvlan
host-B $ docker network create -d macvlan --subnet 192.168.0.0/24 --gateway 192.168.0.1 -o parent=eth0 macvlan

#Creation of web container on host-A
host-A $ docker run -it --net macvlan --ip 192.168.0.4 -e 'DB=dog-db' -e 'ROLE=dog' --name dog-web chrch/web

#Creation of db container on host-B
host-B $ docker run -it --net macvlan --ip 192.168.0.5 --name dog-db redis





When dog-web communicates with dog-db, the physical network will route or switch the packet using the source and destination addresses of the containers. This can simplify network visibility as the packet headers can be linked directly to specific containers. At the same time application portability is decreased as container IPAM is tied to the physical network. Container addressing must adhere to the physical location of container placement in addition to preventing overlapping address assignment. Because of this, care must be taken to manage IPAM externally to a MACVLAN network. Overlapping IP addressing or incorrect subnets can lead to loss of container connectivity.


MACVLAN Benefits and Use Cases


	Very low latency applications can benefit from the macvlan driver because it does not utilize NAT.


	MACVLAN can provide an IP per container, which may be a requirement in some environments.


	More careful consideration for IPAM must be taken in to account.









Conclusion

Docker is a quickly evolving technology, and the networking options are growing to satisfy more and more use cases every day. Incumbent networking vendors, pure-play SDN vendors, and Docker itself are all contributors to this space. Tighter integration with the physical network, network monitoring, and encryption are all areas of much interest and innovation.

This document detailed some but not all of the possible deployments and CNM network drivers that exist. While there are many individual drivers and even more ways to configure those drivers, we hope you can see that there are only a few common models routinely deployed. Understanding the tradeoffs with each model is key to long term success.





          

      

      

    

  

  
    
    The Container Networking Model
    

    
 
  

    
      
          
            
  
[bookmark: cnm]The Container Networking Model

The Docker networking architecture is built on a set of interfaces called the Container Networking Model (CNM). The philosophy of CNM is to provide application portability across diverse infrastructures. This model strikes a balance to achieve application portability and also takes advantage of special features and capabilities of the infrastructure.

[image: Container Networking Model]


CNM Constructs

There are several high-level constructs in the CNM. They are all OS and infrastructure agnostic so that applications can have a uniform experience no matter the infrastructure stack.


	Sandbox — A Sandbox contains the configuration of a container’s network stack. This includes management of the container’s interfaces, routing table, and DNS settings. An implementation of a Sandbox could be a Linux Network Namespace, a FreeBSD Jail, or other similar concept. A Sandbox may contain many endpoints from multiple networks.


	Endpoint — An Endpoint joins a Sandbox to a Network. The Endpoint construct exists so the actual connection to the network can be abstracted away from the application. This helps maintain portability so that a service can use different types of network drivers without being concerned with how it’s connected to that network.


	Network — The CNM does not specify a Network in terms of the OSI model. An implementation of a Network could be a Linux bridge, a VLAN, etc. A Network is a collection of endpoints that have connectivity between them. Endpoints that are not connected to a network will not have connectivity on a Network.




Next: Drivers







          

      

      

    

  

  
    
    CNM Driver Interfaces
    

    
 
  

    
      
          
            
  
CNM Driver Interfaces

The Container Networking Model provides two pluggable and open interfaces that can be used by users, the community, and vendors to leverage additional functionality, visibility, or control in the network.


Categories of Network Drivers


	Network Drivers — Docker Network Drivers provide the actual implementation that makes networks work. They are pluggable so that different drivers can be used and interchanged easily to support different use-cases. Multiple network drivers can be used on a given Docker Engine or Cluster concurrently, but each Docker network is only instantiated through a single network driver. There are two broad types of CNM network drivers:


	Built-In Network Drivers — Built-In Network Drivers are a native part of the Docker Engine and are provided by Docker. There are multiple to choose from that support different capabilities like overlay networks or local bridges.


	Plug-In Network Drivers — Plug-In Network Drivers are network drivers created by the community and other vendors. These drivers can be used to provide integration with incumbent software and hardware. Users can also create their own drivers in cases where they desire specific functionality that is not supported by an existing network driver.






	IPAM Drivers — Docker has a built-in IP Address Management Driver that provides default subnets or IP addresses for Networks and Endpoints if they are not specified. IP addressing can also be manually assigned through network, container, and service create commands. Plug-In IPAM drivers also exist that provide integration to existing IPAM tools.







Docker Built-In Network Drivers

The Docker built-in network drivers are part of Docker Engine and don’t require any extra modules. They are invoked and used through standard docker network commands. The follow built-in network drivers exist:


	Bridge — The bridge driver creates a Linux bridge on the host that is managed by Docker. By default containers on a bridge will be able to communicate with each other. External access to containers can also be configured through the bridge driver.


	Overlay — The overlay driver creates an overlay network that supports multi-host networks out of the box. It uses a combination of local Linux bridges and VXLAN to overlay container-to-container communications over physical network infrastructure.


	MACVLAN — The macvlan driver uses the MACVLAN bridge mode to establish a connection between container interfaces and a parent host interface (or sub-interfaces). It can be used to provide IP addresses to containers that are routable on the physical network. Additionally VLANs can be trunked to the macvlan driver to enforce Layer 2 container segmentation.


	Host — With the host driver, a container uses the networking stack of the host. There is no namespace separation, and all interfaces on the host can be used directly by the container.


	None — The none driver gives a container its own networking stack and network namespace but does not configure interfaces inside the container. Without additional configuration, the container is completely isolated from the host networking stack.







Default Docker Networks

By default a none, host, and bridge network will exist on every Docker host. These networks cannot be removed. When instantiating a Swarm, two additional networks, a bridge network named docker_gwbridge and an overlay network named ingress, are automatically created to facilitate cluster networking.

The docker network ls command shows these default Docker networks for a Docker Swarm:

NETWORK ID          NAME                DRIVER              SCOPE
1475f03fbecb        bridge              bridge              local
e2d8a4bd86cb        docker_gwbridge     bridge              local
407c477060e7        host                host                local
f4zr3zrswlyg        ingress             overlay             swarm
c97909a4b198        none                null                local





In addition to these default networks, user defined networks can also be created. They are discussed later in this document.




Network Scope

As seen in the docker network ls output, Docker network drivers have a concept of scope. The network scope is the domain of the driver which can be the local or swarm scope. Local scope drivers provide connectivity and network services (such as DNS or IPAM) within the scope of the host. Swarm scope drivers provide connectivity and network services across a swarm cluster. Swarm scope networks will have the same network ID across the entire cluster while local scope networks will have a unique network ID on each host.




Docker Plug-In Network Drivers

The following community- and vendor-created plug-in network drivers are compatible with CNM. Each provides unique capabilities and network services for containers.

| Driver | Description   |
|——|——|
| contiv [http://contiv.github.io/] | An open source network plugin led by Cisco Systems to provide infrastructure and security policies for multi-tenant microservices deployments. Contiv also provides integration for non-container workloads and with physical networks, such as ACI. Contiv implements plug-in network and IPAM drivers. |
| weave [https://www.weave.works/docs/net/latest/introducing-weave/] |  A network plugin that creates a virtual network that connects Docker containers across multiple hosts or clouds. Weave provides automatic discovery of applications, can operate on partially connected networks, does not require an external cluster store, and is operations friendly.   |
| calico [https://www.projectcalico.org/]     | Calico is an open source solution for virtual networking in cloud datacenters.  It targets datacenters where most of the workloads (VMs, containers, or bare metal servers) only require IP connectivity. Calico provides this connectivity using standard IP routing. Isolation between workloads — whether according to tenant ownership, or any finer grained policy — is achieved via iptables programming on the servers hosting the source and destination workloads.  |
| kuryr [https://github.com/openstack/kuryr]    | A network plugin developed as part of the OpenStack Kuryr project. It implements the Docker networking (libnetwork) remote driver API by utilizing Neutron, the OpenStack networking service. Kuryr includes an IPAM driver as well. |




Docker Plug-In IPAM Drivers

Community and vendor created IPAM drivers can also be used to provide integrations with existing systems or special capabilities.

| Driver | Description   |
|——|——|
| infoblox [https://store.docker.com/community/images/infoblox/ipam-driver] | An open source IPAM plugin that provides integration with existing Infoblox tools. |


There are many Docker plugins that exist and more are being created all the time. Docker maintains a list of the most common plugins. [https://docs.docker.com/engine/extend/legacy_plugins/]




Next: Linux Network Fundamentals







          

      

      

    

  

  
    
    Linux Network Fundamentals
    

    
 
  

    
      
          
            
  
[bookmark: drivers][bookmark: linuxnetworking]Linux Network Fundamentals

The Linux kernel features an extremely mature and performant implementation of the TCP/IP stack (in addition to other native kernel features like DNS and VXLAN). Docker networking uses the kernel’s networking stack as low level primitives to create higher level network drivers. Simply put, Docker networking is Linux networking.

This implementation of existing Linux kernel features ensures high performance and robustness. Most importantly, it provides portability across many distributions and versions which enhances application portability.

There are several Linux networking building blocks which Docker uses to implement its built-in CNM network drivers. This list includes Linux bridges, network namespaces, veth pairs,  and iptables. The combination of these tools implemented as network drivers provide the forwarding rules, network segmentation, and management tools for complex network policy.


[bookmark: linuxbridge]The Linux Bridge

A Linux bridge is a Layer 2 device that is the virtual implementation of a physical switch inside the Linux kernel. It forwards traffic based on MAC addresses which it learns dynamically by inspecting traffic. Linux bridges are used extensively in many of the Docker network drivers. A Linux bridge is not to be confused with the bridge Docker network driver which is a higher level implementation of the Linux bridge.




Network Namespaces

A Linux network namespace is an isolated network stack in the kernel with its own interfaces, routes, and firewall rules. It is a security aspect of containers and Linux, used to isolate containers. In networking terminology they are akin to a VRF that segments the network control and data plane inside the host. Network namespaces ensure that two containers on the same host will not be able to communicate with each other or even the host itself unless configured to do so via Docker networks. Typically, CNM network drivers implement separate namespaces for each container. However, containers can share the same network namespace or even be a part of the host’s network namespace. The host network namespace contains the host interfaces and host routing table. This network namespace is called the global network namespace.




Virtual Ethernet Devices

A virtual ethernet device or veth is a Linux networking interface that acts as a connecting wire between two network namespaces. A veth is a full duplex link that has a single interface in each namespace. Traffic in one interface is directed out the other interface. Docker network drivers utilize veths to provide explicit connections between namespaces when Docker networks are created. When a container is attached to a Docker network, one end of the veth is placed inside the container (usually seen as the ethX interface) while the other is attached to the Docker network.




iptables

iptables is the native packet filtering system that has been a part of the Linux kernel since version 2.4. It’s a feature rich L3/L4 firewall that provides rule chains for packet marking, masquerading, and dropping. The built-in Docker network drivers utilize iptables extensively to segment network traffic, provide host port mapping, and to mark traffic for load balancing decisions.

Next: Docker Network Control Plane







          

      

      

    

  

  
    
    Docker Network Control Plane
    

    
 
  

    
      
          
            
  
[bookmark: controlplane]Docker Network Control Plane

The Docker-distributed network control plane manages the state of Swarm-scoped Docker networks in addition to propagating control plane data. It is a built-in capability of Docker Swarm clusters and does not require any extra components such as an external KV store. The control plane uses a Gossip [https://en.wikipedia.org/wiki/Gossip_protocol] protocol based on SWIM [https://www.cs.cornell.edu/~asdas/research/dsn02-swim.pdf] to propagate network state information and topology across Docker container clusters. The Gossip protocol is highly efficient at reaching eventual consistency within the cluster while maintaining constant rates of message size, failure detection times, and convergence time across very large scale clusters. This ensures that the network is able to scale across many nodes without introducing scaling issues such as slow convergence or false positive node failures.

The control plane is highly secure, providing confidentiality, integrity, and authentication through encrypted channels. It is also scoped per network which greatly reduces the updates that any given host will receive.

[image: Docker Network Control Plane]

It is composed of several components that work together to achieve fast convergence across large scale networks. The distributed nature of the control plane ensures that cluster controller failures don’t affect network performance.

The Docker network control plane components are as follows:


	Message Dissemination updates nodes in a peer-to-peer fashion fanning out the information in each exchange to a larger group of nodes. Fixed intervals and size of peer groups ensures that network usage is constant even as the size of the cluster scales. Exponential information propagation across peers ensures that convergence is fast and bounded across any cluster size.


	Failure Detection utilizes direct and indirect hello messages to rule out network congestion and specific paths from causing false positive node failures.


	Full State Syncs occur periodically to achieve consistency faster and resolve network partitions.


	Topology Aware algorithms understand the relative latency between themselves and other peers. This is used to optimize the peer groups which makes convergence faster and more efficient.


	Control Plane Encryption protects against man in the middle and other attacks that could compromise network security.





The Docker Network Control Plane is a component of Swarm [https://docs.docker.com/engine/swarm/] and requires a Swarm cluster to operate.




Next: Docker Bridge Network Driver Architecture





          

      

      

    

  

  
    
    Docker Bridge Network Driver Architecture
    

    
 
  

    
      
          
            
  
[bookmark: drivers]Docker Bridge Network Driver Architecture

This section explains the default Docker bridge network as well as user-defined bridge networks.


Default Docker Bridge Network

On any host running Docker Engine, there will, by default, be a local Docker network named bridge. This network is created using a bridge network driver which instantiates a Linux bridge called docker0. This may sound confusing.


	bridge is the name of the Docker network


	bridge is the network driver, or template, from which this network is created


	docker0 is the name of the Linux bridge that is the kernel building block used to implement this network




On a standalone Docker host, bridge is the default network that containers will connect to if no other network is specified. In the following example a container is created with no network parameters. Docker Engine connects it to the bridge network by default. Inside the container we can see eth0 which is created by the bridge driver and given an address by the Docker built-in IPAM driver.

#Create a busybox container named "c1" and show its IP addresses
host$ docker run -it --name c1 busybox sh
c1 # ip address
4: eth0@if5: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue
    link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
    inet 172.17.0.2/16 scope global eth0
...






A container interface’s MAC address is dynamically generated and embeds the IP address to avoid collision. Here ac:11:00:02 corresponds to 172.17.0.2.




By using the tool brctl on the host, we show the Linux bridges that exist in the host network namespace. It shows a single bridge called docker0. docker0 has one interface, vetha3788c4, which provides connectivity from the bridge to the eth0 interface inside container c1.

host$ brctl show
bridge name      bridge id            STP enabled    interfaces
docker0          8000.0242504b5200    no             vethb64e8b8





Inside container c1 we can see the container routing table that directs traffic to eth0 of the container and thus the docker0 bridge.

c1# ip route
default via 172.17.0.1 dev eth0
172.17.0.0/16 dev eth0  src 172.17.0.2





A container can have zero to many interfaces depending on how many networks it is connected to. Each Docker network can only have a single interface per container.

[image: Default Docker Bridge Network]

When we peek into the host routing table we can see the IP interfaces in the global network namespace that now includes docker0. The host routing table provides connectivity between docker0 and eth0 on the external network, completing the path from inside the container to the external network.

host$ ip route
default via 172.31.16.1 dev eth0
172.17.0.0/16 dev docker0  proto kernel  scope link  src 172.17.42.1
172.31.16.0/20 dev eth0  proto kernel  scope link  src 172.31.16.102





By default bridge will be assigned one subnet from the ranges 172.[17-31].0.0/16 or 192.168.[0-240].0/20 which does not overlap with any existing host interface. The default bridge network can be also be configured to use user-supplied address ranges. Also, an existing Linux bridge can be used for the bridge network rather than Docker creating one. Go to the Docker Engine docs [https://docs.docker.com/engine/userguide/networking/default_network/custom-docker0/] for more information about customizing bridge.


The default bridge network is the only network that supports legacy links [https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/]. Name-based service discovery and user-provided IP addresses are not supported by the default bridge network.







[bookmark: userdefined]User-Defined Bridge Networks

In addition to the default networks, users can create their own networks called user-defined networks of any network driver type. In the case of user-defined bridge networks, Docker will create a new Linux bridge on the host. Unlike the default bridge network, user-defined networks supports manual IP address and subnet assignment. If an assignment isn’t given, then Docker’s default IPAM driver will assign the next subnet available in the private IP space.

[image: User-Defined Bridge Network]

Below we are creating a user-defined bridge network and attaching two containers to it. We specify a subnet and call the network my_bridge. One container is not given IP parameters, so the IPAM driver assigns it the next available IP in the subnet. The other container has its IP specified.

$ docker network create -d bridge my_bridge
$ docker run -itd --name c2 --net my_bridge busybox sh
$ docker run -itd --name c3 --net my_bridge --ip 10.0.0.254 busybox sh





brctl now shows a second Linux bridge on the host. The name of the Linux bridge, br-4bcc22f5e5b9, matches the Network ID of the my_bridge network. my_bridge also has two veth interfaces connected to containers c2 and c3.

$ brctl show
bridge name      bridge id            STP enabled    interfaces
br-b5db4578d8c9  8000.02428d936bb1    no             vethc9b3282
                                                     vethf3ba8b5
docker0          8000.0242504b5200    no             vethb64e8b8

$ docker network ls
NETWORK ID          NAME                DRIVER              SCOPE
b5db4578d8c9        my_bridge           bridge              local
e1cac9da3116        bridge              bridge              local
...





Listing the global network namespace interfaces shows the Linux networking circuitry that’s been instantiated by Docker Engine. Each veth and Linux bridge interface appears as a link between one of the Linux bridges and the container network namespaces.

$ ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 
5: vethb64e8b8@if4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 
6: br-b5db4578d8c9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 
8: vethc9b3282@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 
10: vethf3ba8b5@if9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 
...








External and Internal Connectivity

By default all containers on the same bridge driver network will have connectivity with each other without extra configuration. This is an aspect of most types of Docker networks. By virtue of the Docker network the containers are able to communicate across their network namespaces and (for multi-host drivers) across external networks as well. Communication between different Docker networks is firewalled by default. This is a fundamental security aspect that allows us to provide network policy using Docker networks. For example, in the figure above containers c2 and c3 have reachability but they cannot reach c1.

Docker bridge networks are not exposed on the external (underlay) host network by default. Container interfaces are given IPs on the private subnets of the bridge network. Containers communicating with the external network are port mapped or masqueraded so that their traffic uses an IP address of the host. The example below shows outbound and inbound container traffic passing between the host interface and a user-defined bridge network.

[image: Port Mapping and Masquerading]

Outbound (egress) container traffic is allowed by default. Egress connections initiated by containers are masqueraded/SNATed to an ephemeral port (typically in the range of 32768 to 60999). Return traffic on this connection is allowed, and thus the container uses the best routable IP address of the host on the ephemeral port.

Ingress container access is provided by explicitly exposing ports. This port mapping is done by Docker Engine and can be controlled through UCP or the Engine CLI. A specific or randomly chosen port can be configured to expose a service or container. The port can be set to listen on a specific (or all) host interfaces, and all traffic will be mapped from this port to a port and interface inside the container.

This previous diagram shows how port mapping and masquerading takes place on a host. Container C2 is connected to the my_bridge network and has an IP address of 10.0.0.2. When it initiates outbound traffic the traffic will be masqueraded so that it is sourced from ephemeral port 32768 on the host interface 192.168.0.2. Return traffic will use the same IP address and port for its destination and will be masqueraded internally back to the container address:port 10.0.0.2:33920.

Exposed ports can be configured using --publish in the Docker CLI or UCP. The diagram shows an exposed port with the container port 80 mapped to the host interface on port 5000. The exposed container would be advertised at 192.168.0.2:5000, and all traffic going to this interface:port would be sent to the container at 10.0.0.2:80.

Next: Overlay Driver Network Architecture







          

      

      

    

  

  
    
    Overlay Driver Network Architecture
    

    
 
  

    
      
          
            
  
[bookmark: overlaydriver]Overlay Driver Network Architecture

The built-in Docker overlay network driver radically simplifies many of the challenges in multi-host networking. With the overlay driver, multi-host networks are first-class citizens inside Docker without external provisioning or components. overlay uses the Swarm-distributed control plane to provide centralized management, stability, and security across very large scale clusters.


VXLAN Data Plane

The overlay driver utilizes an industry-standard VXLAN data plane that decouples the container network from the underlying physical network (the underlay). The Docker overlay network encapsulates container traffic in a VXLAN header which allows the traffic to traverse the physical Layer 2 or Layer 3 network. The overlay makes network segmentation dynamic and easy to control no matter what the underlying physical topology. Use of the standard IETF VXLAN header promotes standard tooling to inspect and analyze network traffic.


VXLAN has been a part of the Linux kernel since version 3.7, and Docker uses the native VXLAN features of the kernel to create overlay networks. The Docker overlay datapath is entirely in kernel space. This results in fewer context switches, less CPU overhead, and a low-latency, direct traffic path between applications and the physical NIC.




IETF VXLAN (RFC 7348 [https://datatracker.ietf.org/doc/rfc7348/]) is a data-layer encapsulation format that overlays Layer 2 segments over Layer 3 networks. VXLAN is designed to be used in standard IP networks and can support large-scale, multi-tenant designs on shared physical network infrastructure. Existing on-premises and cloud-based networks can support VXLAN transparently.

VXLAN is defined as a MAC-in-UDP encapsulation that places container Layer 2 frames inside an underlay IP/UDP header. The underlay IP/UDP header provides the transport between hosts on the underlay network. The overlay is the stateless VXLAN tunnel that exists as point-to-multipoint connections between each host participating in a given overlay network. Because the overlay is independent of the underlay topology, applications become more portable. Thus, network policy and connectivity can be transported with the application whether it is on-premises, on a developer desktop, or in a public cloud.

[image: Packet Flow for an Overlay Network]

In this diagram we see the packet flow on an overlay network. Here are the steps that take place when c1 sends c2 packets across their shared overlay network:


	c1 does a DNS lookup for c2. Since both containers are on the same overlay network the Docker Engine local DNS server resolves c2 to its overlay IP address 10.0.0.3.


	An overlay network is a L2 segment so c1 generates an L2 frame destined for the MAC address of c2.


	The frame is encapsulated with a VXLAN header by the overlay network driver. The distributed overlay control plane manages the locations and state of each VXLAN tunnel endpoint so it knows that c2 resides on host-B at the physical address of 192.168.1.3. That address becomes the destination address of the underlay IP header.


	Once encapsulated the packet is sent. The physical network is responsible of routing or bridging the VXLAN packet to the correct host.


	The packet arrives at the eth0 interface of host-B and is decapsulated by the overlay network driver. The original L2 frame from c1 is passed to the c2’s eth0 interface and up to the listening application.







Overlay Driver Internal Architecture

The Docker Swarm control plane automates all of the provisioning for an overlay network. No VXLAN configuration or Linux networking configuration is required. Data-plane encryption, an optional feature of overlays, is also automatically configured by the overlay driver as networks are created. The user or network operator only has to define the network (docker network create -d overlay ...) and attach containers to that network.

[image: Overlay Network Created by Docker Swarm]

During overlay network creation, Docker Engine creates the network infrastructure required for overlays on each host. A Linux bridge is created per overlay along with its associated VXLAN interfaces. The Docker Engine intelligently instantiates overlay networks on hosts only when a container attached to that network is scheduled on the host. This prevents sprawl of overlay networks where connected containers do not exist.

In the following example we create an overlay network and attach a container to that network. We’ll then see that Docker Swarm/UCP automatically creates the overlay network.

#Create an overlay named "ovnet" with the overlay driver
$ docker network create -d overlay ovnet

#Create a service from an nginx image and connect it to the "ovnet" overlay network
$ docker service create --network ovnet --name container nginx





When the overlay network is created, you will notice that several interfaces and bridges are created inside the host.

# Run the "ifconfig" command inside the nginx container
$ docker exec -it container ifconfig

#docker_gwbridge network
eth1      Link encap:Ethernet  HWaddr 02:42:AC:12:00:04
          inet addr:172.18.0.4  Bcast:0.0.0.0  Mask:255.255.0.0
          inet6 addr: fe80::42:acff:fe12:4/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:8 errors:0 dropped:0 overruns:0 frame:0
          TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:648 (648.0 B)  TX bytes:648 (648.0 B)

#overlay network
eth2      Link encap:Ethernet  HWaddr 02:42:0A:00:00:07
          inet addr:10.0.0.7  Bcast:0.0.0.0  Mask:255.255.255.0
          inet6 addr: fe80::42:aff:fe00:7/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1450  Metric:1
          RX packets:8 errors:0 dropped:0 overruns:0 frame:0
          TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:648 (648.0 B)  TX bytes:648 (648.0 B)
     
#container loopback
lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:65536  Metric:1
          RX packets:48 errors:0 dropped:0 overruns:0 frame:0
          TX packets:48 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:4032 (3.9 KiB)  TX bytes:4032 (3.9 KiB)





Two interfaces have been created inside the container that correspond to two bridges that now exist on the host. On overlay networks, each container will have at least two interfaces that connect it to the overlay and the docker_gwbridge.

| Bridge | Purpose  |
|:——:|——|
| overlay | The ingress and egress point to the overlay network that VXLAN encapsulates and (optionally) encrypts traffic going between containers on the same overlay network. It extends the overlay across all hosts participating in this particular overlay. One will exist per overlay subnet on a host, and it will have the same name that a particular overlay network is given.    |
| docker_gwbridge |   The egress bridge for traffic leaving the cluster. Only one docker_gwbridge will exist per host. Container-to-Container traffic is blocked on this bridge allowing ingress/egress traffic flows only.      |


The Docker Overlay driver has existed since Docker Engine 1.9, and an external K/V store was required to manage state for the network. Docker 1.12 integrated the control plane state into Docker Engine so that an external store is no longer required. 1.12 also introduced several new features including encryption and service load balancing. Networking features that are introduced require a Docker Engine version that supports them, and using these features with older versions of Docker Engine is not supported.




Next: MACVLAN







          

      

      

    

  

  
    
    MACVLAN
    

    
 
  

    
      
          
            
  
[bookmark: macvlandriver]MACVLAN

The macvlan driver is a new implementation of the tried and true network virtualization technique. The Linux implementations are extremely lightweight because rather than using a Linux bridge for isolation, they are simply associated with a Linux Ethernet interface or sub-interface to enforce separation between networks and connectivity to the physical network.

MACVLAN offers a number of unique features and capabilities. It has positive performance implications by virtue of having a very simple and lightweight architecture. Rather than port mapping, the MACVLAN driver provides direct access between containers and the physical network. It also allows containers to receive routable IP addresses that are on the subnet of the physical network.

The macvlan driver uses the concept of a parent interface. This interface can be a physical interface such as eth0, a sub-interface for 802.1q VLAN tagging like eth0.10 (.10 representing VLAN 10), or even a bonded host adaptor which bundle two Ethernet interfaces into a single logical interface.

A gateway address is required during MACVLAN network configuration. The gateway must be external to the host provided by the network infrastructure. MACVLAN networks allow access between container on the same network. Access between different MACVLAN networks on the same host is not possible without routing outside the host.

[image: Connecting Containers with a MACVLAN Network]

In this example, we bind a MACVLAN network to eth0 on the host. We attach two containers to the mvnet MACVLAN network and show that they can ping between themselves. Each container has an address on the 192.168.0.0/24 physical network subnet and their default gateway is an interface in the physical network.

#Creation of MACVLAN network "mvnet" bound to eth0 on the host 
$ docker network create -d macvlan --subnet 192.168.0.0/24 --gateway 192.168.0.1 -o parent=eth0 mvnet

#Creation of containers on the "mvnet" network
$ docker run -itd --name c1 --net mvnet --ip 192.168.0.3 busybox sh
$ docker run -it --name c2 --net mvnet --ip 192.168.0.4 busybox sh
/ # ping 192.168.0.3
PING 127.0.0.1 (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.052 ms





As you can see in this diagram, c1 and c2 are attached via the MACVLAN network called macvlan attached to eth0 on the host.


VLAN Trunking with MACVLAN

Trunking 802.1q to a Linux host is notoriously painful for many in operations. It requires configuration file changes in order to be persistent through a reboot. If a bridge is involved, a physical NIC needs to be moved into the bridge, and the bridge then gets the IP address. The macvlan driver completely manages sub-interfaces and other components of the MACVLAN network through creation, destruction, and host reboots.

[image: VLAN Trunking with MACVLAN]

When the macvlan driver is instantiated with sub-interfaces it allows VLAN trunking to the host and segments containers at L2. The macvlan driver automatically creates the sub-interfaces and connects them to the container interfaces. As a result each container will be in a different VLAN, and communication will not be possible between them unless traffic is routed in the physical network.

#Creation of  macvlan10 network that will be in VLAN 10
$ docker network create -d macvlan --subnet 192.168.10.0/24 --gateway 192.168.10.1 -o parent=eth0.10macvlan10

#Creation of  macvlan20 network that will be in VLAN 20
$ docker network create -d macvlan --subnet 192.168.20.0/24 --gateway 192.168.20.1 -o parent=eth0.20 macvlan20

#Creation of containers on separate MACVLAN networks
$ docker run -itd --name c1--net macvlan10 --ip 192.168.10.2 busybox sh
$ docker run -it --name c2--net macvlan20 --ip 192.168.20.2 busybox sh





In the preceding configuration we’ve created two separate networks using the macvlan driver that are configured to use a sub-interface as their parent interface. The macvlan driver creates the sub-interfaces and connects them between the host’s eth0 and the container interfaces. The host interface and upstream switch must be set to switchport mode trunk so that VLANs are tagged going across the interface. One or more containers can be connected to a given MACVLAN network to create complex network policies that are segmented via L2.


Because multiple MAC addresses are living behind a single host interface you might need to enable promiscuous mode on the interface depending on the NIC’s support for MAC filtering.




Next: Host (Native) Network Driver







          

      

      

    

  

  
    
    Host (Native) Network Driver
    

    
 
  

    
      
          
            
  
[bookmark: hostdriver]Host (Native) Network Driver

The host network driver connects a container directly to the host networking stack. Containers using the host driver reside in the same network namespace as the host itself. Thus, containers will have native bare-metal network performance at the cost of namespace isolation.

#Create a container attached to the host network namespace and print its network interfaces
$ docker run -it --net host --name c1 busybox ifconfig
docker0   Link encap:Ethernet  HWaddr 02:42:19:5F:BC:F7
          inet addr:172.17.0.1  Bcast:0.0.0.0  Mask:255.255.0.0
          UP BROADCAST MULTICAST  MTU:1500  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

eth0      Link encap:Ethernet  HWaddr 08:00:27:85:8E:95
          inet addr:10.0.2.15  Bcast:10.0.2.255  Mask:255.255.255.0
          inet6 addr: fe80::a00:27ff:fe85:8e95/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:190780 errors:0 dropped:0 overruns:0 frame:0
          TX packets:58407 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:189367384 (180.5 MiB)  TX bytes:3714724 (3.5 MiB)
...

#Display the interfaces on the host
$ ifconfig
docker0   Link encap:Ethernet  HWaddr 02:42:19:5f:bc:f7
          inet addr:172.17.0.1  Bcast:0.0.0.0  Mask:255.255.0.0
          UP BROADCAST MULTICAST  MTU:1500  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)

eth0      Link encap:Ethernet  HWaddr 08:00:27:85:8e:95
          inet addr:10.0.2.15  Bcast:10.0.2.255  Mask:255.255.255.0
          inet6 addr: fe80::a00:27ff:fe85:8e95/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:190812 errors:0 dropped:0 overruns:0 frame:0
          TX packets:58425 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:189369886 (189.3 MB)  TX bytes:3716346 (3.7 MB)
...





In this example we can see that the host and container c1 share the same interfaces. This has some interesting implications. Traffic passes directly from the container to the host interfaces.

With the host driver, Docker does not manage any portion of the container networking stack such as port mapping or routing rules. This means that common networking flags like -p and --icc have no meaning for the host driver. They will be ignored. If the network admin wishes to provide access and policy to containers then this will have to be self-managed on the host or managed by another tool.

Every container using the host network will all share the same host interfaces. This makes host ill suited for multi-tenant or highly secure applications. host containers will have access to every other container on the host.

Full host access and no automated policy management may make the host driver a difficult fit as a general network driver. However, host does have some interesting properties that may be applicable for use cases such as ultra high performance applications, troubleshooting, or monitoring.




[bookmark: nonedriver]None (Isolated) Network Driver

Similar to the host network driver, the none network driver is essentially an unmanaged networking option. Docker Engine will not create interfaces inside the container, establish port mapping, or install routes for connectivity. A container using --net=none will be completely isolated from other containers and the host. The networking admin or external tools must be responsible for providing this plumbing. In the following example we see that a container using none only has a loopback interface and no other interfaces.

#Create a container using --net=none and display its interfaces 
$ docker run -it --net none busybox ifconfig
lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:65536  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B)





Unlike the host driver, the none driver will create a separate namespace for each container. This guarantees container network isolation between any containers and the host.


Containers using --net=none or --net=host cannot be connected to any other Docker networks.




Next: Physical Network Design Requirements





          

      

      

    

  

  
    
    Physical Network Design Requirements
    

    
 
  

    
      
          
            
  
[bookmark: requirements]Physical Network Design Requirements

Docker Datacenter and Docker networking are designed to run over common data center network infrastructure and topologies. Its centralized controller and fault-tolerant cluster guarantee compatibility across a wide range of network environments. The components that provide networking functionality (network provisioning, MAC learning, overlay encryption) are either a part of Docker Engine, UCP, or the Linux kernel itself. No extra components or special networking features are required to run any of the built-in Docker networking drivers.

More specifically, the Docker built-in network drivers have NO requirements for:


	Multicast


	External key-value stores


	Specific routing protocols


	Layer 2 adjacencies between hosts


	Specific topologies such as spine & leaf, traditional 3-tier, and PoD designs. Any of these topologies are supported.




This is in line with the Container Networking Model which promotes application portability across all environments while still achieving the performance and policy required of applications.




[bookmark: sd]Service Discovery Design Considerations

Docker uses embedded DNS to provide service discovery for containers running on a single Docker Engine and tasks running in a Docker Swarm. Docker Engine has an internal DNS server that provides name resolution to all of the containers on the host in user-defined bridge, overlay, and MACVLAN networks. Each Docker container ( or task in Swarm mode) has a DNS resolver that forwards DNS queries to Docker Engine, which acts as a DNS server. Docker Engine then checks if the DNS query belongs to a container or service on network(s) that the requesting container belongs to. If it does, then Docker Engine looks up the IP address that matches a container, task, orservice’s name in its key-value store and returns that IP or service Virtual IP (VIP) back to the requester.

Service discovery is network-scoped, meaning only containers or tasks that are on the same network can use the embedded DNS functionality. Containers not on the same network cannot resolve each other’s addresses. Additionally, only the nodes that have containers or tasks on a particular network store that network’s DNS entries. This promotes security and performance.

If the destination container or service does not belong on same network(s) as source container, then Docker Engine forwards the DNS query to the configured default DNS server.

[image: Service Discovery]

In this example there is a service of two containers called myservice. A second service (client) exists on the same network. The client executes two curl operations for docker.com and myservice. These are the resulting actions:


	DNS queries are initiated by client for docker.com and myservice.


	The container’s built in resolver intercepts the DNS queries on 127.0.0.11:53 and sends them to Docker Engine’s DNS server.


	myservice resolves to the Virtual IP (VIP) of that service which is internally load balanced to the individual task IP addresses. Container names will be resolved as well, albeit directly to their IP address.


	docker.com does not exist as a service name in the mynet network and so the request is forwarded to the configured default DNS server.




Next: Load Balancing Design Considerations





          

      

      

    

  

  
    
    Load Balancing Design Considerations
    

    
 
  

    
      
          
            
  
[bookmark: lb]Load Balancing Design Considerations

Load balancing is a major requirement in modern, distributed applications. Docker Swarm mode introduced in 1.12 comes with a native internal and external load balancing functionalities that utilize both iptables and ipvs, a transport-layer load balancing inside the Linux kernel.


Internal Load Balancing

When services are created in a Docker Swarm cluster, they are automatically assigned a Virtual IP (VIP) that is part of the service’s network. The VIP is returned when resolving the service’s name. Traffic to that VIP will be automatically sent to all healthy tasks of that service across the overlay network. This approach avoids any client-side load balancing because only a single IP is returned to the client. Docker takes care of routing and equally distributing the traffic across the healthy service tasks.

[image: Internal Load Balancing]

To see the VIP, run a docker service inspect my_service as follows:

# Create an overlay network called mynet
$ docker network create -d overlay mynet
a59umzkdj2r0ua7x8jxd84dhr

# Create myservice with 2 replicas as part of that network
$ docker service create --network mynet --name myservice --replicas 2 busybox ping localhost
8t5r8cr0f0h6k2c3k7ih4l6f5

# See the VIP that was created for that service
$ docker service inspect myservice
...

"VirtualIPs": [
                {
                    "NetworkID": "a59umzkdj2r0ua7x8jxd84dhr",
                    "Addr": "10.0.0.3/24"
                },
]
              






DNS round robin (DNS RR) load balancing is another load balancing option for services (configured with --endpoint-mode). In DNS RR mode a VIP is not created for each service. The Docker DNS server resolves a service name to individual container IPs in round robin fashion.




###External Load Balancing (Docker Routing Mesh)
You can expose services externally by using the --publish flag when creating or updating the service. Publishing ports in Docker Swarm mode means that every node in your cluster will be listening on that port. But what happens if the service’s task isn’t on the node that is listening on that port?

This is where routing mesh comes into play. Routing mesh is a feature introduced in Docker 1.12 that combines ipvs and iptables to create a powerful cluster-wide transport-layer (L4) load balancer. It allows all the Swarm nodes to accept connections on the services’ published ports. When any Swarm node receives traffic destined to the published TCP/UDP port of a running service, it forwards it to service’s VIP using a pre-defined overlay network called ingress. The ingress network behaves similarly to other overlay networks but its sole purpose is to transport mesh routing traffic from external clients to cluster services. It uses the same VIP-based internal load balancing as described in the previous section.

Once you launch services, you can create an external DNS record for your applications and map it to any or all Docker Swarm nodes. You do not need to worry about where your container is running as all nodes in your cluster look as one with the routing mesh routing feature.

#Create a service with two replicas and export port 8000 on the cluster
$ docker service create --name app --replicas 2 --network appnet -p 8000:80 nginx





[image: Routing Mess]

This diagram illustrates how the Routing Mesh works.


	A service is created with two replicas, and it is port mapped externally to port 8000.


	The routing mesh exposes port 8000 on each host in the cluster.


	Traffic destined for the app can enter on any host. In this case the external LB sends the traffic to a host without a service replica.


	The kernel’s IPVS load balancer redirects traffic on the ingress overlay network to a healthy service replica.




Next: Network Security and Encryption Design Considerations







          

      

      

    

  

  
    
    Network Security and Encryption Design Considerations
    

    
 
  

    
      
          
            
  
[bookmark: security]Network Security and Encryption Design Considerations

Network security is a top-of-mind consideration when designing and implementing containerized workloads with Docker. In this section, we will go over three key design considerations that are typically raised around Docker network security and how you can utilize Docker features and best practices to address them.


Container Networking Segmentation

Docker allows you to create an isolated network per application using the overlay driver. By default different Docker networks are firewalled from eachother. This approach provides a true network isolation at Layer 3. No malicious container can communicate with your application’s container unless it’s on the same network or your applications’ containers expose services on the host port. Therefore, creating networks for each applications adds another layer of security. The principles of “Defense in Depth” still recommends application-level security to protect at L3 and L7.




Securing the Control Plane

Docker Swarm comes with integrated PKI. All managers and nodes in the Swarm have a cryptographically signed identify in the form of a signed certificate. All manager-to-manager and manager-to-node control communication is secured out of the box with TLS. No need to generate certs externally or set up any CAs manually to get end-to-end control plane traffic secured in Docker Swarm mode. Certificates are periodically and automatically rotated.




Securing the Data Plane

In Docker Swarm mode the data path (e.g. application traffic) can be encrypted out-of-the-box. This feature uses IPSec tunnels to encrypt network traffic as it leaves the source container and decrypts it as it enters the destination container.  This ensure that your application traffic is highly secure when it’s in transit regardless of the underlying networks. In a hybrid, multi-tenant, or multi-cloud environment, it is crucial to ensure data is secure as it traverses networks you might not have control over.

This diagram illustrates how to secure communication between two containers running on different hosts in a Docker Swarm.

[image: Secure Communications between 2 Containers on Different Hosts]

This feature works with the overlay driver in Swarm mode only and can be enabled per network at the time of creation by adding the --opt encrypted=true option (e.g docker network create -d overlay --opt encrypted=true <NETWORK_NAME>). After the network gets created, you can launch services on that network (e.g docker service create --network <NETWORK_NAME> <IMAGE> <COMMAND>). When two tasks of the same services are created on two different hosts, an IPsec tunnel is created between them and traffic gets encrypted as it leaves the source host and gets decrypted as it enters the destination host.

The Swarm leader periodically regenerates a symmetrical key and distributes it securely to all cluster nodes. This key is used by IPsec to encrypt and decrypt data plane traffic. The encryption is implemented via IPSec in host-to-host transport mode using AES-GCM.

Next: IP Address Management







          

      

      

    

  

  
    
    IP Address Management
    

    
 
  

    
      
          
            
  
[bookmark: ipam]IP Address Management

The Container Networking Model (CNM) provides flexibility in how IP addresses are managed. There are two methods for IP address management.


	CNM has a built-in IPAM driver that does simple allocation of IP addresses globally for a cluster and prevents overlapping allocations. The built-in IPAM driver is what is used by default if no other driver is specified.


	CNM has interfaces to use plug-in IPAM drivers from other vendors and the community. These drivers can provide integration into existing vendor or self-built IPAM tools.




Manual configuration of container IP addresses and network subnets can be done using UCP, the CLI, or Docker APIs. The address request will go through the chosen driver which will decide how to process the request.

Subnet size and design is largely dependent on a given application and the specific network driver. IP address space design is covered in more depth for each Network Deployment Model in the next section. The uses of port mapping, overlays, and MACVLAN all have implications on how IP addressing is arranged. In general, container addressing falls into two buckets. Internal container networks (bridge and overlay) address containers with IP addresses that are not routable on the physical network by default. MACVLAN networks provide IP addresses to containers that are on the subnet of the physical network. Thus, traffic from container interfaces can be routable on the physical network. It is important to note that subnets for internal networks (bridge, overlay) should not conflict with the IP space of the physical underlay network. Overlapping address space can cause traffic to not reach its destination.

Next: Network Troubleshooting





          

      

      

    

  

  
    
    Network Troubleshooting
    

    
 
  

    
      
          
            
  
[bookmark: tshoot]Network Troubleshooting

Docker network troubleshooting can be difficult for devops and network engineers. With proper understanding of how Docker networking works and the right set of tools, you can troubleshoot and resolve these network issues. One recommended way is to use the netshoot [https://github.com/nicolaka/netshoot] container to troubleshoot network problems. The netshoot container has a set of powerful networking troubleshooting tools that can be used to troubleshoot Docker network issues.

Next: Network Deployment Models





          

      

      

    

  

  
    
    Network Deployment Models
    

    
 
  

    
      
          
            
  
[bookmark: models]Network Deployment Models

Docker Engine and community provide multiple drivers to use. These drivers can be configured in multiple ways, and the physical network design and configuration will also affect network behavior. This section looks at different configurations and how they interoperate with the application and the physical network. This is not an exhaustive list but a description of common methods of deployment.

[image: Common Methods of Network Deployment]

Back to Concepts
or
On to Tutorials





          

      

      

    

  

  
    
    Challenges of Networking Containers and Microservices
    

    
 
  

    
      
          
            
  
[bookmark: challenges]Challenges of Networking Containers and Microservices

Microservices practices have increased the scale of applications which has put even more importance on the methods of connectivity and isolation that we provide to applications. The Docker networking philosophy is application driven. It aims to provide options and flexibility to the network operators as well as the right level of abstraction to the application developers.

Like any design, network design is a balancing act. Docker Datacenter and the Docker ecosystem provides multiple tools to network engineers to achieve the best balance for their applications and environments. Each option provides different benefits and tradeoffs. The remainder of this guide details each of these choices so network engineers can understand what might be best for their environments.

Docker has developed a new way of delivering applications, and with that, containers have also changed some aspects of how we approach networking. The following topics are common design themes for containerized applications:


	Portability


	How do I guarantee maximum portability across diverse network environments while taking advantage of unique network characteristics?






	Service Discovery


	How do I know where services are living as they are scaled up and down?






	Load Balancing


	How do I share load across services as services themselves are brought up and scaled?






	Security


	How do I segment to prevent the right containers from accessing each other?


	How do I guarantee that a container with application and cluster control traffic is secure?






	Performance


	How do I provide advanced network services while minimizing latency and maximizing bandwidth?






	Scalability


	How do I ensure that none of these characteristics are sacrificed when scaling applications across many hosts?









[bookmark: concepts]Concepts

This section contains 14 different short networking concept chapters. Feel free to skip right to the tutorials if you feel you are ready and come back here if you need a refresher. The concept chapters are:


	The Container Networking Model


	Drivers


	Linux Networking Fundamentals


	Docker Network Control Plane


	Bridge Networks


	Overlay Networks


	MACVLAN


	Host (Native) Network Driver


	Physical Network Design Requirements


	Load Balancing Design Considerations


	Security


	IP Address Management


	Troubleshooting


	Network Deployment Models










          

      

      

    

  

  
    
    Docker Swarm Mode Tutorials
    

    
 
  

    
      
          
            
  
Docker Swarm Mode Tutorials

Docker Swarm Mode [https://docs.docker.com/engine/swarm/] is a feature of Docker. These tutorials are designed to help you quickly get started with orchestration using Swarm Mode.


	Docker Swarm Mode full tutorial








          

      

      

    

  

  
    
    Docker Swarm Tutorial
    

    
 
  

    
      
          
            
  
Docker Swarm Tutorial


Note: This tutorial uses Docker Machine to simulate multiple machines on your desktop. There’s an easier way to learn swarm mode, and that is using Play with Docker [http://training.play-with-docker.com/swarm-mode-intro/]. This tutorial is preserved for legacy reasons, and also in case you really want to learn to do this on your own machine.




Docker includes swarm mode for natively managing a cluster of Docker Engines called a swarm. You can use the Docker CLI to create a swarm, deploy application services to a swarm, and manage swarm behavior. This tutorial uses Docker Machine [https://docs.docker.com/machine/] to create multiple nodes on your desktop. If you prefer you can create those nodes in your own cloud or on multiple machines.


Important Note
You don’t need to use the Docker CLI to perform these operations. You can use docker stack deploy --compose-file STACKNAME.yml STACKNAME instead. For an introduction to using a stack file in a compose file format to deploy an app, check out Deploying an app to a Swarm [https://github.com/docker/labs/blob/master/beginner/chapters/votingapp.md].





Preparation

You need to have Docker and Docker Machine installed on your system. Download Docker [https://docker.com/getdocker] for your platform and install it.


Tips:





	If you are using Docker for Mac or Docker for Windows, you already have Docker Machine, as it is installed with those applications. See Download Docker for Mac [https://docs.docker.com/docker-for-mac/#/download-docker-for-mac] and Download Docker for Windows [https://docs.docker.com/docker-for-windows/#/download-docker-for-windows] for install options and details on what gets installed.





	If you are using Docker for Windows you will need to use the Hyper-V driver for Docker Machine. That will require a bit more set-up. See the Microsoft Hyper-V driver documentation [https://docs.docker.com/machine/drivers/hyper-v/] for directions on setting it up.





	If you are using Docker directly on a Linux system, you will need to install Docker Machine [https://docs.docker.com/machine/install-machine/] (after installing Docker Engine [https://docs.docker.com/engine/installation/linux/]).







Creating the nodes and Swarm

Docker Machine [https://docs.docker.com/machine/overview/] can be used to:


	Install and run Docker on Mac or Windows


	Provision and manage multiple remote Docker hosts


	Provision Swarm clusters




But it can also be used to create multiple nodes on your local machine. There’s a bash script [https://github.com/docker/labs/blob/master/swarm-mode/beginner-tutorial/swarm-node-vbox-setup.sh] in this repository that does just that and creates a swarm. There’s also a powershell Hyper-V version [https://github.com/docker/labs/blob/master/swarm-mode/beginner-tutorial/swarm-node-hyperv-setup.ps1]. On this page we’re walking through the bash script, but the steps, aside from set-up, are a basically the same for the Hyper-V version.

This first step creates three machines, and names the machines manager1, manager2, and manager3

#!/bin/bash

# Swarm mode using Docker Machine

#This configures the number of workers and managers in the swarm
managers=3
workers=3

# This creates the manager machines
echo "======> Creating $managers manager machines ...";
for node in $(seq 1 $managers);
do
    echo "======> Creating manager$node machine ...";
    docker-machine create -d virtualbox manager$node;
done





This second step creates three more machines, and names them worker1, worker2, and worker3

# This create worker machines
echo "======> Creating $workers worker machines ...";
for node in $(seq 1 $workers);
do
    echo "======> Creating worker$node machine ...";
    docker-machine create -d virtualbox worker$node;
done

# This lists all machines created
docker-machine ls





Next you create a swarm by initializing it on the first manager. You do this by using docker-machine ssh to run docker swarm init

# initialize swarm mode and create a manager
echo "======> Initializing first swarm manager ..."
docker-machine ssh manager1 "docker swarm init --listen-addr $(docker-machine ip manager1) --advertise-addr $(docker-machine ip manager1)"





Next you get join tokens for managers and workers.

# get manager and worker tokens
export manager_token=`docker-machine ssh manager1 "docker swarm join-token manager -q"`
export worker_token=`docker-machine ssh manager1 "docker swarm join-token worker -q"`





Then join the other masters to the Swarm

for node in $(seq 2 $managers);
do
    echo "======> manager$node joining swarm as manager ..."
    docker-machine ssh manager$node \
        "docker swarm join \
        --token $manager_token \
        --listen-addr $(docker-machine ip manager$node) \
        --advertise-addr $(docker-machine ip manager$node) \
        $(docker-machine ip manager1)"
done





Finally, add the worker machines and join them to the swarm.

# workers join swarm
for node in $(seq 1 $workers);
do
    echo "======> worker$node joining swarm as worker ..."
    docker-machine ssh worker$node \
    "docker swarm join \
    --token $worker_token \
    --listen-addr $(docker-machine ip worker$node) \
    --advertise-addr $(docker-machine ip worker$node) \
    $(docker-machine ip manager1):2377"
done

# show members of swarm
docker-machine ssh manager1 "docker node ls"





That last line will show you a list of all the nodes, something like this:

ID                           HOSTNAME  STATUS  AVAILABILITY  MANAGER STATUS
3cq6idpysa53n6a21nqe0924h    manager3  Ready   Active        Reachable
64swze471iu5silg83ls0bdip *  manager1  Ready   Active        Leader
7eljvvg0icxlw20od5f51oq8t    manager2  Ready   Active        Reachable
8awcmkj3sd9nv1pi77i6mdb1i    worker1   Ready   Active        
avu80ol573rzepx8ov80ygzxz    worker2   Ready   Active        
bxn1iivy8w7faeugpep76w50j    worker3   Ready   Active        





You can also find all your machines by running

$ docker-machine ls
NAME       ACTIVE   DRIVER       STATE     URL                         SWARM   DOCKER      ERRORS
manager1   -        virtualbox   Running   tcp://192.168.99.100:2376           v17.03.0-ce   
manager2   -        virtualbox   Running   tcp://192.168.99.101:2376           v17.03.0-ce 
manager3   -        virtualbox   Running   tcp://192.168.99.102:2376           v17.03.0-ce
worker1    -        virtualbox   Running   tcp://192.168.99.103:2376           v17.03.0-ce
worker2    -        virtualbox   Running   tcp://192.168.99.104:2376           v17.03.0-ce
worker3    -        virtualbox   Running   tcp://192.168.99.105:2376           v17.03.0-ce





The next step is to create a service and list out the services. This creates a single service called web that runs the latest nginx:

$ docker-machine ssh manager1 "docker service create -p 80:80 --name web nginx:latest"
$ docker-machine ssh manager1 "docker service ls"
ID            NAME  REPLICAS  IMAGE         COMMAND
2x4jsk6313az  web   1/1       nginx:latest  





Now open the machine’s IP address in your browser. You can see above manager1 had an IP address of 192.168.99.100
[image: nginx in Chrome at 192.168.99.100]

You can actually load any of the node ip addresses and get the same result because of Swarm Mode’s Routing Mesh [https://docs.docker.com/engine/swarm/ingress/].
[image: nginx in Chrome at 192.168.99.100]

Next let’s inspect the service

$ docker-machine ssh manager1 "docker service inspect web"
[
    {
        "ID": "2x4jsk6313azr6g1dwoi47z8u",
        "Version": {
            "Index": 104
        },
        "CreatedAt": "2016-08-23T22:43:23.573253682Z",
        "UpdatedAt": "2016-08-23T22:43:23.576157266Z",
        "Spec": {
            "Name": "web",
            "TaskTemplate": {
                "ContainerSpec": {
                    "Image": "nginx:latest"
                },
                "Resources": {
                    "Limits": {},
                    "Reservations": {}
                },
                "RestartPolicy": {
                    "Condition": "any",
                    "MaxAttempts": 0
                },
                "Placement": {}
            },
            "Mode": {
                "Replicated": {
                    "Replicas": 1
                }
            },
            "UpdateConfig": {
                "Parallelism": 1,
                "FailureAction": "pause"
            },
            "EndpointSpec": {
                "Mode": "vip",
                "Ports": [
                    {
                        "Protocol": "tcp",
                        "TargetPort": 80,
                        "PublishedPort": 80
                    }
                ]
            }
        },
        "Endpoint": {
            "Spec": {
                "Mode": "vip",
                "Ports": [
                    {
                        "Protocol": "tcp",
                        "TargetPort": 80,
                        "PublishedPort": 80
                    }
                ]
            },
            "Ports": [
                {
                    "Protocol": "tcp",
                    "TargetPort": 80,
                    "PublishedPort": 80
                }
            ],
            "VirtualIPs": [
                {
                    "NetworkID": "24r1loluvdohuzltspkwbhsc8",
                    "Addr": "10.255.0.9/16"
                }
            ]
        },
        "UpdateStatus": {
            "StartedAt": "0001-01-01T00:00:00Z",
            "CompletedAt": "0001-01-01T00:00:00Z"
        }
    }
]





That’s lots of info! Now, let’s scale the service:

$ docker-machine ssh manager1 "docker service scale web=15"
web scaled to 15
$ docker-machine ssh manager1 "docker service ls"
ID            NAME  REPLICAS  IMAGE         COMMAND
2x4jsk6313az  web   15/15     nginx:latest  





Docker has spread the 15 services evenly over all of the nodes

$ docker-machine ssh manager1 "docker service ps web"
ID                         NAME    IMAGE         NODE      DESIRED STATE  CURRENT STATE           ERROR
61wjx0zaovwtzywwbomnvjo4q  web.1   nginx:latest  worker3   Running        Running 13 minutes ago  
bkkujhpbtqab8fyhah06apvca  web.2   nginx:latest  manager1  Running        Running 2 minutes ago   
09zkslrkgrvbscv0vfqn2j5dw  web.3   nginx:latest  manager1  Running        Running 2 minutes ago   
4dlmy8k72eoza9t4yp9c9pq0w  web.4   nginx:latest  manager2  Running        Running 2 minutes ago   
6yqabr8kajx5em2auvfzvi8wi  web.5   nginx:latest  manager3  Running        Running 2 minutes ago   
21x7sn82883e7oymz57j75q4q  web.6   nginx:latest  manager2  Running        Running 2 minutes ago   
14555mvu3zee6aek4dwonxz3f  web.7   nginx:latest  worker1   Running        Running 2 minutes ago   
1q8imt07i564bm90at3r2w198  web.8   nginx:latest  manager1  Running        Running 2 minutes ago   
encwziari9h78ue32v5pjq9jv  web.9   nginx:latest  worker3   Running        Running 2 minutes ago   
aivwszsjhhpky43t3x7o8ezz9  web.10  nginx:latest  worker2   Running        Running 2 minutes ago   
457fsqomatl1lgd9qbz2dcqsb  web.11  nginx:latest  worker1   Running        Running 2 minutes ago   
7chhofuj4shhqdkwu67512h1b  web.12  nginx:latest  worker2   Running        Running 2 minutes ago   
7dynic159wyouch05fyiskrd0  web.13  nginx:latest  worker1   Running        Running 2 minutes ago   
7zg9eki4610maigr1xwrx7zqk  web.14  nginx:latest  manager3  Running        Running 2 minutes ago   
4z2c9j20gwsasosvj7mkzlyhc  web.15  nginx:latest  manager2  Running        Running 2 minutes ago   





You can also drain a particular node, that is remove all services from that node. The services will automatically be rescheduled on other nodes.

$ docker-machine ssh manager1 "docker node update --availability drain worker1"
worker1
$ docker-machine ssh manager1 "docker service ps web"
ID                         NAME        IMAGE         NODE      DESIRED STATE  CURRENT STATE           ERROR
61wjx0zaovwtzywwbomnvjo4q  web.1       nginx:latest  worker3   Running        Running 15 minutes ago  
bkkujhpbtqab8fyhah06apvca  web.2       nginx:latest  manager1  Running        Running 4 minutes ago   
09zkslrkgrvbscv0vfqn2j5dw  web.3       nginx:latest  manager1  Running        Running 4 minutes ago   
4dlmy8k72eoza9t4yp9c9pq0w  web.4       nginx:latest  manager2  Running        Running 4 minutes ago   
6yqabr8kajx5em2auvfzvi8wi  web.5       nginx:latest  manager3  Running        Running 4 minutes ago   
21x7sn82883e7oymz57j75q4q  web.6       nginx:latest  manager2  Running        Running 4 minutes ago   
8so0xi55kqimch2jojfdr13qk  web.7       nginx:latest  worker3   Running        Running 3 seconds ago   
14555mvu3zee6aek4dwonxz3f   \_ web.7   nginx:latest  worker1   Shutdown       Shutdown 4 seconds ago  
1q8imt07i564bm90at3r2w198  web.8       nginx:latest  manager1  Running        Running 4 minutes ago   
encwziari9h78ue32v5pjq9jv  web.9       nginx:latest  worker3   Running        Running 4 minutes ago   
aivwszsjhhpky43t3x7o8ezz9  web.10      nginx:latest  worker2   Running        Running 4 minutes ago   
738jlmoo6tvrkxxar4gbdogzf  web.11      nginx:latest  worker2   Running        Running 3 seconds ago   
457fsqomatl1lgd9qbz2dcqsb   \_ web.11  nginx:latest  worker1   Shutdown       Shutdown 3 seconds ago  
7chhofuj4shhqdkwu67512h1b  web.12      nginx:latest  worker2   Running        Running 4 minutes ago   
4h7zcsktbku7peh4o32mw4948  web.13      nginx:latest  manager3  Running        Running 3 seconds ago   
7dynic159wyouch05fyiskrd0   \_ web.13  nginx:latest  worker1   Shutdown       Shutdown 4 seconds ago  
7zg9eki4610maigr1xwrx7zqk  web.14      nginx:latest  manager3  Running        Running 4 minutes ago   
4z2c9j20gwsasosvj7mkzlyhc  web.15      nginx:latest  manager2  Running        Running 4 minutes ago   





You can check out the nodes and see that worker1 is still active but drained.

$ docker-machine ssh manager1 "docker node ls"
ID                           HOSTNAME  STATUS  AVAILABILITY  MANAGER STATUS
3cq6idpysa53n6a21nqe0924h    manager3  Ready   Active        Reachable
64swze471iu5silg83ls0bdip *  manager1  Ready   Active        Leader
7eljvvg0icxlw20od5f51oq8t    manager2  Ready   Active        Reachable
8awcmkj3sd9nv1pi77i6mdb1i    worker1   Ready   Drain         
avu80ol573rzepx8ov80ygzxz    worker2   Ready   Active        
bxn1iivy8w7faeugpep76w50j    worker3   Ready   Active





You can also scale down the service

$ docker-machine ssh manager1 "docker service scale web=10"
web scaled to 10
$ docker-machine ssh manager1 "docker service ps web"
ID                         NAME        IMAGE         NODE      DESIRED STATE  CURRENT STATE            ERROR
61wjx0zaovwtzywwbomnvjo4q  web.1       nginx:latest  worker3   Running        Running 22 minutes ago   
bkkujhpbtqab8fyhah06apvca  web.2       nginx:latest  manager1  Shutdown       Shutdown 54 seconds ago  
09zkslrkgrvbscv0vfqn2j5dw  web.3       nginx:latest  manager1  Running        Running 11 minutes ago   
4dlmy8k72eoza9t4yp9c9pq0w  web.4       nginx:latest  manager2  Running        Running 11 minutes ago   
6yqabr8kajx5em2auvfzvi8wi  web.5       nginx:latest  manager3  Running        Running 11 minutes ago   
21x7sn82883e7oymz57j75q4q  web.6       nginx:latest  manager2  Running        Running 11 minutes ago   
8so0xi55kqimch2jojfdr13qk  web.7       nginx:latest  worker3   Running        Running 7 minutes ago    
14555mvu3zee6aek4dwonxz3f   \_ web.7   nginx:latest  worker1   Shutdown       Shutdown 7 minutes ago   
1q8imt07i564bm90at3r2w198  web.8       nginx:latest  manager1  Running        Running 11 minutes ago   
encwziari9h78ue32v5pjq9jv  web.9       nginx:latest  worker3   Shutdown       Shutdown 54 seconds ago  
aivwszsjhhpky43t3x7o8ezz9  web.10      nginx:latest  worker2   Shutdown       Shutdown 54 seconds ago  
738jlmoo6tvrkxxar4gbdogzf  web.11      nginx:latest  worker2   Running        Running 7 minutes ago    
457fsqomatl1lgd9qbz2dcqsb   \_ web.11  nginx:latest  worker1   Shutdown       Shutdown 7 minutes ago   
7chhofuj4shhqdkwu67512h1b  web.12      nginx:latest  worker2   Running        Running 11 minutes ago   
4h7zcsktbku7peh4o32mw4948  web.13      nginx:latest  manager3  Running        Running 7 minutes ago    
7dynic159wyouch05fyiskrd0   \_ web.13  nginx:latest  worker1   Shutdown       Shutdown 7 minutes ago   
7zg9eki4610maigr1xwrx7zqk  web.14      nginx:latest  manager3  Shutdown       Shutdown 54 seconds ago  
4z2c9j20gwsasosvj7mkzlyhc  web.15      nginx:latest  manager2  Shutdown       Shutdown 54 seconds ago  





Now bring worker1 back online and show it’s new availability

$ docker-machine ssh manager1 "docker node update --availability active worker1"
worker1
$ docker-machine ssh manager1 "docker node inspect worker1 --pretty"
ID:         8awcmkj3sd9nv1pi77i6mdb1i
Hostname:       worker1
Joined at:      2016-08-23 22:30:15.556517377 +0000 utc
Status:
 State:         Ready
 Availability:      Active
Platform:
 Operating System:  linux
 Architecture:      x86_64
Resources:
 CPUs:          1
 Memory:        995.9 MiB
Plugins:
  Network:      bridge, host, null, overlay
  Volume:       local
Engine Version:     17.03.0-ce
Engine Labels:
 - provider = virtualbox





Now let’s take the manager1 node, the leader, out of the Swarm

$ docker-machine ssh manager1 "docker swarm leave --force"
Node left the swarm.





Wait about 30 seconds just to be sure. The Swarm still functions, but must elect a new leader. This happens automatically.

$ docker-machine ssh manager2 "docker node ls"
ID                           HOSTNAME  STATUS  AVAILABILITY  MANAGER STATUS
3cq6idpysa53n6a21nqe0924h    manager3  Ready   Active        Reachable
64swze471iu5silg83ls0bdip    manager1  Down    Active        Unreachable
7eljvvg0icxlw20od5f51oq8t *  manager2  Ready   Active        Leader
8awcmkj3sd9nv1pi77i6mdb1i    worker1   Ready   Active        
avu80ol573rzepx8ov80ygzxz    worker2   Ready   Active        
bxn1iivy8w7faeugpep76w50j    worker3   Ready   Active





You see that manager1 is Down and Unreachable and manager2 has been elected leader. It’s also easy to remove a service:

$ docker-machine ssh manager2 "docker service rm web"
web








Cleanup

There’s also a bash script [https://github.com/ManoMarks/labs/blob/master/swarm-mode/beginner-tutorial/swarm-node-vbox-teardown.sh] that will clean up your machine by removing all the Docker Machines.

$ ./swarm-node-vbox-teardown.sh
Stopping "manager3"...
Stopping "manager2"...
Stopping "worker1"...
Stopping "manager1"...
Stopping "worker3"...
Stopping "worker2"...
Machine "manager3" was stopped.
Machine "manager1" was stopped.
Machine "manager2" was stopped.
Machine "worker2" was stopped.
Machine "worker1" was stopped.
Machine "worker3" was stopped.
About to remove worker1, worker2, worker3, manager1, manager2, manager3
Are you sure? (y/n): y
Successfully removed worker1
Successfully removed worker2
Successfully removed worker3
Successfully removed manager1
Successfully removed manager2
Successfully removed manager3








Next steps

Check out the documentation on Docker Swarm Mode [https://docs.docker.com/engine/swarm/] for more information.







          

      

      

    

  
_images/gossip.png
overlay 2

‘o
-0
6

C = swarm/UCP controller
W = worker node

overlay 1





_images/hrm-network.png
‘,O- Dashboard Resources User Management Admin Settings

RESOURCE TYPE 4+ Create Network Q_ Search networks...

L Services
] Containers
NAME DRIVER SCOPE
[7] Images
ip-172-31-14-243.eu-west-l.compute.internal /dtr-br bridge local
Nodes
ip-172-31-30-239.eu-west-l.compute.internal/none null local
&% Networks @ |
B Vol ip-172-31-0-28.eu-west-l.compute.internal/none null local
olumes
—  Applications ip-172-31-26-170.eu-west-l.compute.internal/docker_gwbridge bridge local
ucp-hrm overlay swarm
ip-172-31-30-238.eu-west-l.compute.internal/docker_gwbridge bridge local
ip-172-31-30-239.eu-west-l.compute.internal/dtr-br bridge local

ip-172-31-0-28.eu-west-l.compute.internal/bridge bridge local





_images/driver-comparison.png
Bridge & Port Mapping MACVLAN

Multi-Host Connectivity Yes No native support No native support

Service Discovery Global SD across cluster  Local SD onhostnetwork  Local SD on host network

Internal global VIP-based
Load Balancing Internal global DNS-based  Intemal local DNS-based  Intemna local DNS-based
Extemal routing mesh

Internal addressing per Internal addressing per
IPAddressing |container, globally scoped per ~ container, locally scoped per
overlay bridge

External addressing per
container, on physical network

Native Encryption Yes, optional No No

. engine 1.12+
[L— i engine 1.7+ host nterface in promiscuous
‘mode






_images/enable-hrm.png
Dashboard

Resources

User Management  Admin Setting:

SETTINGS
Swarm Mode Parameters
Certificates
Logs
Auth
DTR

Routing Mesh

HTTP Routing Mesh(&xeermenal)
/| Enable HTTP Routing Mesh &
HTTP PORT ©@

80

Update

g





_images/ipvs.png
Request  Service Discovery  ServiceVIP  IPVS Load Balancing  Individual Task (Container)






_images/macvlanarch.png
gateway: 192.168.0.1





_images/hrm-svc1.png
Dashboard

RESOURCE TYPE

@ g @@ E B

Services

Containers

Images

Nodes

Networks

Volumes

Applications

Resources User Management Admin Settings

+ Create Service | Show system services Q Search...

STATUS NAME IMAGE MODE LAST UPDATED
® /1 ucp-hrm @ docker/ucp-hrm:2.0.1 Replicated ® 38 minutes ago
® 38/8 ucp-agent docker/ucp-agent:2.0.1 Global @ adayago





_images/ipsec.png
containor 1

010216802

70: 10101012

h0: 19216803






_images/manager1-nginx.png
® O ® /[ welcome to nginx! x

< C | ® 192.168.99.100

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.





_images/manager2-nginx.png
® © ® /[ weicome to nginx! x

< C | ® 192.168.99.101

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.





_images/bridge2.png





_images/browser.png
- —7 =" ~E
Welcome to nginx! \

e — e T o ) =

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.






_images/apptopology.png





_images/bridge1.png





_images/cnm.png
Network Sandbox Network Sandbox






_images/multihost-bridge.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_images/2node-macvlan-app.png
macvian macvian






_images/overlayarch.png





_images/DNS.png
task1.myservice task2.myservice taski.client

curl docker.com

I

Resolver (127.0.0.11) Resolver (127.0.0.11) Resolver

(]

curl myservice]

¥4

r (127.0.0.1)

myservice VIP
(10.0.0.3)

“mynet” network

taskl.myservice  10.0.0.4
task2.myservice  10.0.0.5
myservice VIP 10.0.0.3
external DNS 8.8.8.8

internal engine KV store

external DNS





_images/packetwalk.png
Appiication Data.

Src:ARAA  Dst:B88B.
eh0:10.002

etho: 192.16802

Application Data

Src:AMA  Dst:BBBB.
eh0:100.03

Appiication Data.

Underay P Header

5110002
Dst:10.003

Src: 192:168.02
05t:102168:1.3






_images/multitenant.png
=]






_images/nat.png
Masquerade / NAT

192.168.0.2: 32768 10.0.0.2: 33920

192.168.0.2 : 5000 10.0.0.2: 8